首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2932篇
  免费   71篇
  国内免费   14篇
化学   1675篇
晶体学   11篇
力学   91篇
数学   436篇
物理学   804篇
  2022年   28篇
  2021年   31篇
  2020年   38篇
  2019年   41篇
  2018年   24篇
  2017年   31篇
  2016年   60篇
  2015年   36篇
  2014年   65篇
  2013年   128篇
  2012年   130篇
  2011年   159篇
  2010年   81篇
  2009年   60篇
  2008年   123篇
  2007年   122篇
  2006年   124篇
  2005年   143篇
  2004年   96篇
  2003年   100篇
  2002年   81篇
  2001年   73篇
  2000年   64篇
  1999年   48篇
  1998年   37篇
  1997年   49篇
  1996年   44篇
  1995年   57篇
  1994年   48篇
  1993年   47篇
  1992年   46篇
  1991年   37篇
  1990年   40篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1985年   35篇
  1984年   29篇
  1983年   20篇
  1982年   33篇
  1981年   45篇
  1980年   29篇
  1979年   45篇
  1978年   36篇
  1977年   40篇
  1976年   37篇
  1975年   36篇
  1974年   33篇
  1973年   41篇
  1972年   29篇
排序方式: 共有3017条查询结果,搜索用时 15 毫秒
81.
Free energy perturbation calculations were performed to determine the free energy of binding associated with the presence of perhaps an unusual hydroxyl group in the transition state analog of nebularine, an inhibitor of the enzyme adenosine deaminase. The presence of a single hydroxyl group in this inhibitor has been found to contribute ?9.8 kcal/mol to the free energy of binding, with a 108-fold increase in the binding affinity by the enzyme. In this work, we calculate the difference in solvation free energy for the 1,6-dihydropurine complex versus that of the 6-hydroxyl-1,6-dihydropurine complex to determine if this marked increase in binding affinity is attributed to an unusually hydrophobic hydroxyl group. The calculated ΔG associated for the solvation free energy is ?11.8 kcal/mol. This large change in the solvation free energy suggests that this hydroxyl is instead unusually hydrophilic and that the difference in free energy of interaction for the two inhibitors to the enzyme must be at least ca. 20 kcal/mol. Although the crystal structure for adenosine deaminase is currently not known, we attempt to mimic the nature of the active site by constructing models which simulate the enzyme-inhibitor complex. We present a first attempt at determining the change in free energy of binding for a system in which structural data for the enzyme is incomplete. To do this, we construct what we believe is a minimal model of the binding between adenosine deaminase and an inhibitor. The active site is simulated as a single charged carboxyl group which can form a hydrogen bond with the hydroxyl group of the analog. Two different carboxyl anion models are used. In the first model, the association is modeled between an acetic acid anion and the modified inhibitor. The second model consists of a hydrophobic amino acid pocket with an interior Glu residue in the active site. From these models we calculate the change in free energy of association and the overall change in free energy of binding. We calculate the free energies of interaction both in the absence and presence of water. We conclude from this that the presence of a single suitably placed-CO?2 group probably cannot explain the binding effect of the-OH group and that additional interactions will be found in the adenosine deaminase active site.  相似文献   
82.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   
83.
The influence of a partially filled conduction band on the magnetic properties of ferromagnetic semiconductors is studied within the framework of thes-f model. Allowing for magnon scattering to arbitrary order in the form of virtual electron- holecreation the magnon spectral density is derived, from which one gets magnon energies which are substantially renormalized by the presence of conduction electrons. In particular it is shown how the quasiparticle structure of the electronic excitation energies [4, 5] leads to scattering corrections in the magnon spectrum. These corrections are always negative and reduce the positive mean field part, which is proportional to the electron densityn. The calculated magnon spectrum is then used to determine the strikingn-dependence of the Curie-temperatureT c of Gd-doped EuO and EuS.  相似文献   
84.
The equations governing geometrical objects in ? space are written in terms of operators adapted to families of left shear-freeσ 0= 0) cross sections of complexified null infinity (C I +). The concept of ?-conformai weight (HCW) is introduced, and a derivative operatorI a , which is closely connected with the covariant derivative but which (unlike the covariant derivative) maps objects having well-defined HCW to other such objects, is defined. A function ?, derived from the Gaussian curvature of left shear-free slicings ofC I + and having a well-defined HCW, is shown to contain all the curvature information for ? space.  相似文献   
85.
We have been investigating the crystallization behavior of the phospholipid amphiphile, 1,2 bis (10, 12-tricosadiynol)-sn-glycero-3-phosphocholine, DC8,9PC, which forms both vesicles and hollow tubules as well as Langmuir Blodgett monolayers and multilayers. This material has polymerizable diacetylene groups in equivalent positions on the two hydrocarbon tails. The direct crystallization from solution of this amphiphile has been studied using different solvent mixtures and temperatures. The Langmuir Blodgett technique was also used to compress and orient the tubules.  相似文献   
86.
Expressions for calculating the stationary state distribution of radicals in compartmentalized systems with a constant number of reaction loci containing an oil-soluble initiator are given. Besides pairwise formation of radicals in the particles, desorption and reabsorption, water phase termination, solubility of the initiator in the aqueous phase, and the possibility of formation of a single radical species are taken into consideration. The calculation is based on a probabilistic analysis leading to a third-order recurrence relation solved using confluent, hypergeometric Kummer functions. Some calculated curves illustrating the de-pendence of the average number of radicals per particle on various relevant parameters are included. © 1995 John Wiley & Sons, Inc.  相似文献   
87.
Fang Z  Sun L  Hansen EH  Olesen JE  Henriksen LM 《Talanta》1992,39(4):383-390
A hydride generation atomic-absorption spectrometric (AAS) method with flow-injection (FI), aimed at developing a practical routine assay for the determination of tin in food digests, is described. In order to modify the sample matrix and to achieve optimized and reproducible conditions for the hydride generation reaction, the analyte is initially converted into its chlorostannate-complex thereby allowing it to be separated and preconcentrated on-line on an incorporated micro-column packed with a strongly basic anion exchanger and subsequently to be eluted by diluted nitric acid under strictly controlled conditions. Optimum acidic conditions for the FI hydride generation AAS system was found to be 0.01-0.05M nitric acid. At a consumption of 2.7-ml sample volume, aspirated by time-based injection, the procedure resulted in an enrichment factor of 3.5 and yielded a detection limit of 0.08 microg/l. (3sigma) at a sampling frequency of 72/hr. The precision was 2.5% rsd at the 10 microg/l. level. Potential interferents, such as Ni(II), Co(II), Zn(II) and Fe(III) could, at a Sn level of 10 microg/l., be tolerated at an excess of 1000 times without impairing the assay, while a 100-1000-fold excess of Cu(II) decreased the signal by 10-15%. Recoveries in the range 94-102% were obtained for canned food sample digests spiked with 10 microg/l. Sn.  相似文献   
88.
Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 or OTf) based on the cryptand H3L = N[(CH2)2N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–R–CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N–(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln–Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)–Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln–Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

We present a synthetic strategy to prepare the first heterodinuclear lanthanide(iii) cryptate complexes. The cryptate design ensures that the complexes are stable in solution for days. The exchange coupling in YbYb, GdGd and YbGd is investigated.  相似文献   
89.
The dehydrogenation reaction of the heptalene-4,5-dimethanols 4a and 4d , which do not undergo the double-bond-shift (DBS) process at ambient temperature, with basic MnO2 in CH2Cl2 at room temperature, leads to the formation of the corresponding heptaleno[1,2-c]furans 6a and 6d , respectively, as well as to the corresponding heptaleno[1,2-c]furan-3-ones 7a and 7d , respectively (cf. Scheme 2 and 8). The formation of both product types necessarily involves a DBS process (cf. Scheme 7). The dehydrogenation reaction of the DBS isomer of 4a , i.e., 5a , with MnO2 in CH2Cl2 at room temperature results, in addition to 6a and 7a , in the formation of the heptaleno[1,2-c]-furan-1-one 8a and, in small amounts, of the heptalene-4,5-dicarbaldehyde 9a (cf. Scheme 3). The benzo[a]heptalene-6,7-dimethanol 4c with a fixed position of the C?C bonds of the heptalene skeleton, on dehydrogenation with MnO2 in CH2Cl2, gives only the corresponding furanone 11b (Scheme 4). By [2H2]-labelling of the methanol function at C(7), it could be shown that the furanone formation takes place at the stage of the corresponding lactol [3-2H2]- 15b (cf. Scheme 6). Heptalene-1,2-dimethanols 4c and 4e , which are, at room temperature, in thermal equilibrium with their corresponding DBS forms 5c and 5e , respectively, are dehydrogenated by MnO2 in CH2Cl2 to give the corresponding heptaleno[1,2-c]furans 6c and 6e as well as the heptaleno[1,2-c]furan-3-ones 7c and 7e and, again, in small amounts, the heptaleno[1,2-c]furan-1-ones 8c and 8e , respectively (cf. Scheme 8). Therefore, it seems that the heptalene-1,2-dimethanols are responsible for the formation of the furan-1-ones (cf. Scheme 7). The methylenation of the furan-3-ones 7a and 7e with Tebbe's reagent leads to the formation of the 3-methyl-substituted heptaleno[1,2-c]furans 23a and 23e , respectively (cf. Scheme 9). The heptaleno[1,2-c]furans 6a, 6d , and 23a can be resolved into their antipodes on a Chiralcel OD column. The (P)-configuration is assigned to the heptaleno[1,2-c]furans showing a negative Cotton effect at ca. 320 nm in the CD spectrum in hexane (cf. Figs. 3–5 as well as Table 7). The (P)-configuration of (–)- 6a is correlated with the established (P)-configuration of the dimethanol (–)- 5a via dehydrogenation with MnO2. The degree of twisting of the heptalene skeleton of 6 and 23 is determined by the Me-substitution pattern (cf. Table 9). The larger the heptalene gauche torsion angles are, the more hypsochromically shifted is the heptalene absorption band above 300 nm (cf. Table 7 and 8, as well as Figs. 6–9).  相似文献   
90.
It is shown that azulene ( 1 ) and dimethyl acetylenedicarboxylate (ADM) in a fourfold molar excess react at 200° in decalin to yield, beside the known heptalene- ( 5 ) and azulene-1,2-dicarboxylates ( 6 ), in an amount of 1.6% tetramethyl (1RS,2RS,5SR,8RS)-tetracyclo[6.2.2.22,501,5]tetradeca-3,6,9,11,13-pentaene-3,4,9,10-tetracarboxylate(‘anti’-7) as a result of a SHOMO (azulene)/LUMO(ADM)-controlled addition of ADM to the seven-membered ring of 1 followed by a Diels-Alder reaction of the so formed tricyclic intermediate 16 (cf. Scheme 3) with a second molecule of ADM. The structure of ‘anti’-7 was confirmed by an X-ray diffraction analysis. Similarly, the thermal reaction of 5,7-dimehtylazulene ( 3 ) with excess ADM in decalin at 120° led to the formation of ca. 1% of ‘anti’- 12 , the 7,12-dimethyl derivative of‘anti’-7, beside of the corresponding heptalene- 10 and azulene-1,2-dicaboxylated (cf Scheme 2). The introduction of Me groups at C(1)and C(3)of azulene ( 1 ) and its 5,7-dimethyl derivative 3 strongly enhance the thermal formation of the corresponding tetracyclic compound. Thus, 1,3-dimethylazulene ( 2 ) in the presence of a sevenfold molar excess of ADM at 200° yielded 20% of ‘anti’- 9 beside an equal amount of dimethyl 3-mehtylazulene-1,2-dicarboxylate ( 8 ;cf. Scheme 1), and 1,3,5,7-tetramethylazulene ( 4 ) with a fourfold molar excess of ADM AT 200° gave a yield of 37% of‘anti’- 15 beside small amount of the corresponding heptalene- 13 and azulene-1,2-dicarboxylates 14 (cf.Scheme 2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号