首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   2篇
化学   94篇
力学   1篇
数学   7篇
物理学   32篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2003年   8篇
  2000年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1974年   1篇
  1958年   1篇
  1956年   1篇
  1955年   3篇
  1954年   2篇
  1949年   1篇
  1940年   3篇
  1937年   3篇
  1936年   2篇
  1935年   2篇
  1933年   3篇
  1932年   2篇
  1931年   2篇
  1930年   1篇
  1929年   1篇
  1928年   1篇
  1927年   5篇
  1926年   1篇
  1925年   1篇
  1924年   3篇
  1920年   2篇
  1916年   1篇
  1914年   3篇
  1913年   3篇
  1911年   1篇
  1906年   2篇
排序方式: 共有134条查询结果,搜索用时 437 毫秒
81.
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a ?1 V/? field causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a ~1 fs time scale. These phenomena are due to a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.  相似文献   
82.
83.
Journal of Radioanalytical and Nuclear Chemistry - Molybdenum-99 is one of the most important radionuclides for medical diagnostics. In 2015, the International Atomic Energy Agency organized a...  相似文献   
84.
In this work we deal with nondeterministic stochastic activity networks (NDSANs). Their stochastic character results from activity durations, which are given by nonnegative continuous random variables. The nondeterministic behavior of an NDSAN is a consequence of its variable topology, based on two additional features. First, by associating choice probabilities with the immediate successors of an activity, some branches of execution are not always taken. Second, by allowing iterated executions of a group of activities according to predetermined probabilities, the number of times an activity is to be executed is not determined a priori. These properties lead to a wide variety of activity networks, capable of modelling many real situations in process engineering and project management. We describe a simple, recursively structured construction of NDSANs, which both provides a coherent syntactic mechanism to incorporate the two abovementioned nondeterminism features and allows the analytic formulation of completion time. This construction also directly gives rise to a recursive simulation algorithm for NDSANs, whose repeated execution produces an estimate of the probability distribution of the completion time of the network. We also report on real-world case studies, using the Komolgorov–Smirnov statistic for validation.  相似文献   
85.
86.
The magnetic properties of vanadium doped ZnO nanorods formed by different growth methods were examined. The samples under investigation were either grown by metallorganic vapour-phase epitaxy (MOVPE) with in situ incorporation of the V atoms or by aqueous chemical growth (ACG) in combination with an ion-implantation process. The V concentration for all samples was less than 2 at.%.Field-cooled SQUID measurements only reveal a weak ferromagnetic signal still in a very sensitive measuring range. However, the MFM micrographs obtained at room temperature show a clear magnetic contrast and complex structures, the images are in good agreement with the phase images expected for vertically aligned magnetic dipoles. This is a strong indication for a ferromagnetic behaviour at room temperature.  相似文献   
87.
88.
Marques  J.G.  Kling  A.  de Jesus  C.M.  Soares  J.C.  Friedsam  P.  Freitag  K.  Vianden  R. 《Hyperfine Interactions》1999,120(1-8):485-489
The temperature dependence of the electric-field gradient of 111Cd in single crystalline LiTaO3 was studied from room temperature to 1040 K in the ferroelectric and paraelectric phases. The data taken at room temperature show unambiguously the presence of two quadrupole interaction frequencies, νQ1=230 MHz and νQ2=242 MHz, with nonzero asymmetry parameters, while above the Curie temperature (TC=878 K) the data are well described by a unique frequency. The electric field gradient shows a usual temperature dependence, increasing aproximately in a linear fashion until TC and then decreasing faster. The initial increase is explained mostly by the lattice expansion, while above TC it is necessary to consider Li and O displacements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
89.
We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.  相似文献   
90.
The strong-field induced decay of a doubly excited, transient Coulomb complex Ar**→Ar(2+)+2e(-) is explored by tracing correlated two-electron emission in nonsequential double ionization of Ar as a function of the carrier-envelope phase. Using <6 fs pulses, electron emission is essentially confined to one optical cycle. Classical model calculations support that the intermediate Coulomb complex has lost memory of its formation dynamics and allows for a consistent, though model-dependent definition of "emission time," empowering us to trace transition-state two-electron decay dynamics with sub-fs resolution. We find a most likely emission time difference of ~200±100 as.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号