首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17173篇
  免费   474篇
  国内免费   43篇
化学   11828篇
晶体学   87篇
力学   252篇
综合类   2篇
数学   2933篇
物理学   2588篇
  2020年   122篇
  2019年   131篇
  2016年   268篇
  2015年   258篇
  2014年   329篇
  2013年   631篇
  2012年   471篇
  2011年   486篇
  2010年   379篇
  2009年   338篇
  2008年   504篇
  2007年   495篇
  2006年   508篇
  2005年   482篇
  2004年   429篇
  2003年   445篇
  2002年   432篇
  2001年   328篇
  2000年   307篇
  1999年   202篇
  1998年   178篇
  1997年   212篇
  1996年   251篇
  1995年   217篇
  1994年   252篇
  1993年   237篇
  1992年   229篇
  1991年   213篇
  1990年   213篇
  1989年   222篇
  1988年   219篇
  1987年   240篇
  1986年   212篇
  1985年   335篇
  1984年   320篇
  1983年   202篇
  1982年   268篇
  1981年   265篇
  1980年   281篇
  1979年   276篇
  1978年   309篇
  1977年   338篇
  1976年   287篇
  1975年   263篇
  1974年   221篇
  1973年   273篇
  1972年   132篇
  1971年   156篇
  1970年   117篇
  1966年   102篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Anti‐infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA‐targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low‐nanomolar (Kd=19 nm , microarray) ligand with a tyrosine‐based linker arm could be identified in a structure–activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.  相似文献   
992.
Until now, the potential effects of titanium dioxide (TiO2) nanoparticles on endothelial cells are not well understood, despite their already wide usage. Therefore, the present work characterizes six TiO2 nanoparticle samples in the size range of 19 × 17 to 87 × 13 nm, which are commonly present in sun protection agents with respect to their physicochemical properties (size, shape, ζ-potential, agglomeration, sedimentation, surface coating, and surface area), their interactions with serum proteins and biological impact on human microvascular endothelial cells (relative cellular dehydrogenase activity, adenosine triphosphate content, and monocyte chemoattractant protein-1 release). We observed no association of nanoparticle morphology with the agglomeration and sedimentation behavior and no variations of the ζ-potential (?14 to ?19 mV) in dependence on the surface coating. In general, the impact on endothelial cells was low and only detectable at concentrations of 100 μg/ml. Particles containing a rutile core and having rod-like shape had a stronger effect on cell metabolism than those with anatase core and elliptical shape (relative cellular dehydrogenase activity after 72 h: 60 vs. 90 %). Besides the morphology, the nanoparticle shell constitution was found to influence the metabolic activity of the cells. Upon cellular uptake, the nanoparticles were localized perinuclearly. Considering that in the in vivo situation endothelial cells would come in contact with considerably lower nanoparticle amounts than the lowest-observable adverse effects level (100 μg/ml), TiO2 nanoparticles can be considered as rather harmless to humans under the investigated conditions.  相似文献   
993.
994.
Classical Taylor expansions of holomorphic functions in the complex plane are extended to distributions in Rnand in domains  相似文献   
995.
The application of a variety of “surface‐science” techniques to elucidate surface structures and mechanisms of chemical reactions at zeolite surfaces has long been considered as almost impossible because of the poor electrical and thermal conductivity of those materials. Here, we show that the growth of a thin aluminosilicate film on a metal single crystal under controlled conditions results in adequate and well‐defined model systems for zeolite surfaces. In principle, silicate films that contain metals other than Al (e.g. Ti, Fe, etc) may be prepared in a similar way. We believe that this approach opens up a new playground for experimental and theoretical modeling of zeolites, aimed at a fundamental understanding of structure–reactivity relationships in such materials.  相似文献   
996.
A solid state metathesis (SSM) reaction was investigated with respect to the formation of rare‐earth carbodiimides, the role of the co‐produced salt (LiCl), and the eutectic flux medium (LiCl/KCl). A SSM reaction is characterized by an exothermic reaction in which a salt (often LiCl) is coproduced. When the salt melts, it can serve as a useful medium for the crystallization of a desired product. An improved crystal growth can be observed by using an eutectic flux. However, the composition of an eutectic LiCl/KCl flux is altered when LiCl is produced during the reaction. The thermal effects concerning the endothermic melting of the flux and the exothermic ingnition of the SSM reaction may compensate each other, which is not necessarily a drawback for the reaction to proceed.  相似文献   
997.
998.
999.
Since January 2009, the list of prohibited substances and methods of doping as established by the World Anti-Doping Agency includes new therapeutics such as the peroxisome-proliferator-activated receptor (PPAR)-delta agonist GW1516, which is categorized as a gene doping substance. GW1516 has completed phase II and IV clinical trials regarding dyslipidemia and the regulation of the lipoprotein transport in metabolic syndrome conditions; however, its potential to also improve athletic performance due to the upregulation of genes associated with oxidative metabolism and a modified substrate preference that shifted from carbohydrate to lipid consumption has led to a ban of this compound in elite sport. In a recent report, two presumably mono-oxygenated and bisoxygenated urinary metabolites of GW1516 were presented, which could serve as target analytes for doping control purposes after full characterization. Hence, in the present study, phase I metabolism was simulated by in vitro assays employing human liver microsomal fractions yielding the same oxygenation products, followed by chemical synthesis of the assumed structures of the two abundant metabolic reaction products. These allowed the identification and characterization of mono-oxygenated and bisoxygenated metabolites (sulfoxide and sulfone, respectively) as supported by high-resolution/high-accuracy mass spectrometry with higher-energy collision-induced dissociation, tandem mass spectrometry, and nuclear magnetic resonance spectroscopy. Since urine samples have been the preferred matrix for doping control purposes, a method to detect the new target GW1516 in sports drug testing samples was developed in accordance to conventional screening procedures based on enzymatic hydrolysis and liquid–liquid extraction followed by liquid chromatography, electrospray ionization, and tandem mass spectrometry. Validation was performed for specificity, limit of detection (0.1 ng/ml), recovery (72%), intraday and interday precisions (7.7–15.1%), and ion suppression/enhancement effects (<10%).  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号