首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10474篇
  免费   280篇
  国内免费   65篇
化学   7349篇
晶体学   24篇
力学   153篇
综合类   1篇
数学   2062篇
物理学   1230篇
  2020年   74篇
  2019年   86篇
  2016年   184篇
  2015年   175篇
  2014年   232篇
  2013年   404篇
  2012年   266篇
  2011年   276篇
  2010年   236篇
  2009年   219篇
  2008年   291篇
  2007年   272篇
  2006年   296篇
  2005年   278篇
  2004年   257篇
  2003年   266篇
  2002年   274篇
  2001年   195篇
  2000年   175篇
  1999年   117篇
  1998年   111篇
  1997年   140篇
  1996年   138篇
  1995年   119篇
  1994年   133篇
  1993年   159篇
  1992年   150篇
  1991年   123篇
  1990年   133篇
  1989年   142篇
  1988年   140篇
  1987年   142篇
  1986年   121篇
  1985年   229篇
  1984年   199篇
  1983年   127篇
  1982年   171篇
  1981年   157篇
  1980年   199篇
  1979年   197篇
  1978年   198篇
  1977年   230篇
  1976年   187篇
  1975年   170篇
  1974年   135篇
  1973年   186篇
  1972年   96篇
  1971年   90篇
  1970年   71篇
  1933年   67篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
A systematic analysis of the S(1)-trans (A?(1)A(u)) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm(-1). Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46?175 cm(-1). Its (13)C isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S(1)-cis isomer (A?(1)A(2)). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)] of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the (13)C isotope shift of the 46?175 cm(-1) level (assigned here as cis-3(1)6(1)). The S(1)-cis zero-point level is deduced to lie near 44?900 cm(-1), and the ν(6) vibrational frequency of the S(1)-cis well is found to be roughly 565 cm(-1); these values are in remarkably good agreement with the results of recent ab initio calculations. The 46?175 cm(-1) vibrational level is found to have a 3.9 cm(-1) staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization.  相似文献   
992.
Ab initio nonadiabatic dynamics simulations of cis-to-trans isomerization of azobenzene upon S(1) (n-π*) excitation are carried out employing the fewest-switches surface hopping method. Azobenzene photoisomerization occurs purely as a rotational motion of the central CNNC moiety. Two nonequivalent rotational pathways corresponding to clockwise or counterclockwise rotation are available. The course of the rotational motion is strongly dependent on the initial conditions. The internal conversion occurs via an S(0)/S(1) crossing seam located near the midpoint of both of these rotational pathways. Based on statistical analysis, it is shown that the occurrence of one or other pathway can be completely controlled by selecting adequate initial conditions.  相似文献   
993.
We present experimental proof that so-called "flowerlike micelles" exist and that they have some distinctly different properties compared to their "starlike" counterparts. Amphiphilic AB diblock and BAB triblock copolymers consisting of poly(ethylene glycol) (PEG) as hydrophilic A block and thermosensitive poly(N-isopropylacrylamide) (pNIPAm) B block(s) were synthesized via atom transfer radical polymerization (ATRP). In aqueous solutions, both block copolymer types form micelles above the cloud point of pNIPAm. Static and dynamic light scattering measurements in combination with NMR relaxation experiments proved the existence of flowerlike micelles based on pNIPAm(16kDa)-PEG(4kDa)-pNIPAm(16kDa) which had a smaller radius and lower mass and aggregation number than starlike micelles based on mPEG(2kDa)-pNIPAm(16kDa). Furthermore, the PEG surface density was much lower for the flowerlike micelles, which we attribute to the looped configuration of the hydrophilic PEG block. (1)H NMR relaxation measurements showed biphasic T(2) relaxation for PEG, indicating rigid PEG segments close to the micelle core and more flexible distal segments. Even the flexible distal segments were shown to have a lower mobility in the flowerlike micelles compared to the starlike micelles, indicating strain due to loop formation. Taken together, it is demonstrated that self-assemblies of BAB triblock copolymers have their hydrophilic block in a looped conformation and thus indeed adopt a flowerlike conformation.  相似文献   
994.
In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute-solvent configurations extracted from the MD simulation at 300 K are found to be inferior to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations visited during the molecular dynamics run as well as inaccuracies in geometrical parameters generated from the classical molecular dynamics simulations.  相似文献   
995.
The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.  相似文献   
996.
997.
998.
999.
Fulgides are a representative class of photochromic organic molecules which exhibit several interesting properties for diverse applications in fields such as data storage or high‐resolution spectroscopy. The crystal structures of three furyl fulgides with different steric constraints were determined and for two of the compounds both the E and Z isomer structures were defined. The compounds are 3‐[(E)‐1,3‐dimethyl‐4,5,6,7‐tetrahydro‐2‐benzofuran‐4‐ylidene]‐4‐isopropylidenetetrahydrofuran‐2,5‐dione, C17H18O4, (I‐E), 3‐[(E)‐1,3‐dimethyl‐5,6,7,8‐tetrahydro‐4H‐cyclohepta[c]furan‐4‐ylidene]‐4‐isopropylidenetetrahydrofuran‐2,5‐dione, C18H20O4, (II‐E), and the Z isomer, (II‐Z), and 3‐isopropylidene‐4‐[(E)‐1‐(5‐methoxy‐2‐methyl‐1‐benzofuran‐3‐yl)ethylidene]tetrahydrofuran‐2,5‐dione, C19H18O5, (III‐E), with two molecules in the asymmetric unit, and the Z isomer, (III‐Z). The structures of the E and Z isomers show only little differences in the bond lengths and angles inside the hexatriene unit. Because of the strained geometry there are deviations in the torsion angles. Furthermore, small differences in the distances between the bond‐forming C atoms in the electrocyclization process give no explanation for the unequal photochromic behaviour.  相似文献   
1000.
The present work refers to high-temperature drop calorimetric measurements on liquid Al–Cu, Al–Sn, and Al–Cu–Sn alloys. The binary systems have been investigated at 973 K, up to 40 at.% Cu in case of Al–Cu, and over the entire concentrational range in case of Al–Sn. Measurements in the ternary Al–Cu–Sn system were performed along the following cross-sections: xAl/xCu = 1:1, xAl/xSn = 1:1, xCu/xSn = 7:3, xCu/xSn = 1:1, and xCu/xSn = 3:7 at 1273 K. Experimental data were used to find ternary interaction parameters by applying the Redlich–Kister–Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1273 K. The ternary system shows an exothermic enthalpy minimum of approx. ?18,000 J/mol in the Al–Cu binary and a maximum of approx. 4000 J/mol in the Al–Sn binary system. The Al–Cu–Sn system is characterized by considerable repulsive ternary interactions as shown by the positive ternary interaction parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号