首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   5篇
化学   107篇
晶体学   1篇
力学   3篇
数学   50篇
物理学   35篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   16篇
  2010年   2篇
  2009年   2篇
  2008年   17篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有196条查询结果,搜索用时 8 毫秒
1.
Glycosylation is the most widespread protein modification and is known to modulate signal transduction and several biologically important interactions. In order to understand and evaluate the biological role of glycosylation it is important to identify the glycosylated protein and localize the site glycosylation under particular biological conditions. To identify glycosylated peptides from simple mixtures, i.e., in-gel digests from single SDS PAGE bands we performed high resolution, high accuracy precursor ion scanning using a quadrupole TOF instrument equipped with the Q(2) pulsing function. The high resolving power of the quadrupole TOF instrument results in the selective detection of glycan specific fragment ions minimizing the interference of peptide derived fragment ions with the same nominal mass. Precursor ion scanning has been previously described for these glycan derived ions. However the use of this method has been limited by the low specificity of the method. The analysis using precursor ion scanning can be applied to any peptide mixture from a protein digest without having previous knowledge of the glycosylation of the protein. In addition to the low femtomole (nanomolar) detection limits, this method has the advantage that no prior derivatization or enzymatic treatment of the peptide mixtures is required.  相似文献   
2.

Background

How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes.

Results

Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance.

Conclusions

Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A network model which can reproduce these changes suggests that a key function of such learning-evoked alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs.  相似文献   
3.
4.
5.
Summary A special class of hypersurfaces of a Riemannian space is examined, this class being defined by the stipulation that the coefficients of the third fundamental form be expressible as linear combinations of the coefficients of the first and second fundamental forms. It is jound that these so-called C-hypersurfaces are umbilical provided that certain conditions (which may depend on dimension) are satisfied. An (n-1)-dimensional Einstein space imbedded in an n-dimensional space of constant curvature is such a C-hypersurface; accordingly the theory may be applied to the problem of the local imbedding of such spaces. Entrata in Redazione il 23 giugno 1971.  相似文献   
6.
Attempts to perform the OsO4-catalyzed enantioselective base-free aminohydroxylation of β,β-disubstituted enoates are described. Low yields and racemic products were obtained in the presence of standard chiral ligands, suggesting the occurrence of a “Second Cycle” process due to slow hydrolysis of the amino alcohol product from the Os metal center. Support for this hypothesis was provided by the slightly improved enantioselectivity (60:40 er) obtained with an amino alcohol ligand. Based on density functional theory calculations, it is proposed that the lack of significant enantioselectivity is due to a low-energy (3 + 2) oxo/imido cycloaddition transition state without the chiral ligand in the Second Cycle that outcompetes protonolysis in the First Cycle.  相似文献   
7.
8.
9.
A sensitive and selective method for the analysis of aliphatic low molecular mass organic acids (LMMOAs) in natural waters is presented. The method is based on separation with ion exclusion chromatography and detection with electrospray ionization tandem mass spectrometry (LC-MS/MS). The extra selectivity gained by applying MS/MS allows for a minimum of sample preparation and the use of a sub-optimal mobile phase regarding chromatographic resolution. Instead the mobile phase, comprising aqueous formic acid with methanol as organic modifier, was mainly optimized for maximum sensitivity and long term MS stability. Detection limits for malonic, fumaric, maleic, succinic, citraconic, glutaric, malic, alpha-ketoglutaric, tartaric, shikimic, trans-aconitic, cis-aconitic, isocitric and citric acid were in the range 1-50 nM, while the detection limits for pyruvic, oxalic and lactic acid were around 250 nM for an injection volume of 100 microL. Due to their metal-chelating properties, these LMMOAs are all considered to affect the bioavailability of metals and to be involved in soil forming processes. It is thus of interest to be able to monitor their presence in natural waters, and the method developed within this work was successfully applied for the analysis of LMMOAs in soil solution and stream water samples.  相似文献   
10.
How the monotonic trend on which the periodicity of the periodic system is superposed is well described by Thomas–Fermi theory is explained. The mathematical structure of the periodicity is elucidated and explained. Algebraic formulas for the key atomic numbers are derived, e.g., the atomic number at which l electrons first appear is given by Zf(??) = 4 (∑ n2)+1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号