首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15595篇
  免费   2229篇
  国内免费   1417篇
化学   11247篇
晶体学   184篇
力学   879篇
综合类   77篇
数学   1895篇
物理学   4959篇
  2024年   52篇
  2023年   333篇
  2022年   579篇
  2021年   612篇
  2020年   713篇
  2019年   608篇
  2018年   533篇
  2017年   464篇
  2016年   721篇
  2015年   767篇
  2014年   790篇
  2013年   1158篇
  2012年   1330篇
  2011年   1324篇
  2010年   881篇
  2009年   874篇
  2008年   1035篇
  2007年   881篇
  2006年   773篇
  2005年   737篇
  2004年   526篇
  2003年   431篇
  2002年   420篇
  2001年   334篇
  2000年   306篇
  1999年   307篇
  1998年   211篇
  1997年   161篇
  1996年   206篇
  1995年   171篇
  1994年   144篇
  1993年   127篇
  1992年   105篇
  1991年   88篇
  1990年   94篇
  1989年   70篇
  1988年   63篇
  1987年   50篇
  1986年   41篇
  1985年   45篇
  1984年   37篇
  1983年   17篇
  1982年   16篇
  1981年   20篇
  1980年   11篇
  1979年   8篇
  1976年   10篇
  1975年   11篇
  1971年   7篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.  相似文献   
12.
There have been remarkable progresses in manipulating heterogeneous catalysts' nanostructures in the past decade. The concept of single atom alloy (SAA) was firstly proposed in 2012 when researchers successfully stabilized single Pd atoms on the Cu(111) surface. However, earlier work in 2009, which focused on replacing one Au atom with a Pd atom in thiolate protected Au25 nanoclusters, could also be considered as the pioneer work of single atom alloy. Both kinds of single atom alloys exhibited the potential of maximum utilization of scarce elements and attractive catalytic performances. The well‐defined structures of SAA catalysts make accurate modeling possible, which further realizes the rational design of single atom alloy catalysts. In this review, we summarize the research trajectory of single atom alloys as well as recent achievements in this field. We also introduce several commonly adopted characterization methods for SAA catalysts such as scanning tunneling microscopy (STM), temperature programmed reaction (TPR), extended X‐ray absorption fine structure (EXAFS) spectra, matrix assisted laser desorption/ionization mass spectrum (MALDI‐MS) and differential pulse voltammetry (DPV). Through discussing recent progresses in SAA catalysts, we propose that future researches in this filed should be focused on exploring new kinds of metal nanocrystals and controlling the nanostructure of SAA even more precisely.  相似文献   
13.
The reaction mechanism of the l-proline-catalyzed α-aminoxylation reaction between aldehyde and nitrosobenzene has been investigated using density functional theory (DFT) calculation. Our calculation results reveal following conclusions [1]. The first step that corresponds to the formation of C–O bond, is the stereocontrolling and rate-determining step [2]. Among four reaction channels, the syn-attack reaction channel is more favorable than that of the anti one, and the TS-ss channel dominates among the four channels for this reaction in the step of C–O bond formation [3]. The intermolecular hydrogen bond between the acidic hydrogen of l-proline and the N atom of the nitrosobenzene in an early stage of the process catalyzes very effectively the C–O bond formation by a large stabilization of the negative charge that is developing at the O atom along the electrophilic attack [4]. The effect of solvent decreases the activation energy, and also, the calculated energy barriers are decrease with the enhancement of dielectric constants for C–O bond formation step. These results are in good agreement with experiment, and allow us to explain the origin of the catalysis and stereoselectivity for l-proline-catalyzed α-aminoxylation of aldehyde reaction. The addition of H2O to substituted imine proline, intermolecular proton-transfer steps, and the l-proline elimination process were also studied in this paper.  相似文献   
14.
Zuilhof H  Morokuma K 《Organic letters》2003,5(17):3081-3084
[reaction: see text] Quantum chemical calculations were used to rationalize the observed enantiodifferentiation in the complexation of alpha-amino acids to chiral Cu(II) complexes. Apart from Cu(II)[bond]pi interactions and steric repulsions between the anchoring cholesteryl-Glu moiety and an aromatic amino acid R group, hydrogen bonding also plays a role. In fact, in the case of tryptophan, C[double bond]O...H[bond]N hydrogen bonding between the glutamate moiety and the tryptophan N[bond]H group compensates for the loss of intramolecular hydrogen-bonding and diminished Cu(II)[bond]pi interactions.  相似文献   
15.
Eighteen novel pyrimido[4,5-e][1,4]oxazepin-5-ones were prepared directly via the reaction of either ethyl 4-chloro-2-phenyl-5-pyrimidinecarboxylate (Ia) or ethyl 4-chloro-2-m-chlorophenyl-5-pyrimidinecarboxylate (Ib) with a variety of substituted 2-(alkylamino)ethanols. A typical example was the preparation of 8,9-dihydro-9-methyl-2-phenylpyrimido[4,5-e][1,4]-oxazepin-5(7H)-one (IIa) from the reaction of Ia with 2-(methylamino)ethanol. Hydrolytic cleavage of the lactone ring in IIa with sodium hydroxide solution, followed by acidification with hydrochloric acid afforded 4-[(2-hydroxyethyl)methylamino]-2-phenyl-5-pyrimidinecarboxylic acid (IV). Reactions of IIa with concentrated ammonium hydroxide or hydrazine also caused cleavage of the lactone ring, giving the corresponding amide (V) or hydrazide (VI), respectively. Structural assignments were supported by infrared and nuclear magnetic resonance spectra.  相似文献   
16.
贮氢材料电极循环寿命的定量预测定时放电半衰期法的应用韩剑文,袁满雪,周作祥,赖城明(南开大学化学系天津300071)关键词:贮氢电极,循环寿命,半衰期。前文 ̄[1]讨论了应用定终点电位放电半衰期法来预测贮氢材料电极循环寿命的问题。本文讨论如何采用定时...  相似文献   
17.
Takacs JM  Han J 《Organic letters》2004,6(18):3099-3102
[reaction: see text] Combinatorial screening of five catalyst precursors and nine ligands with three substituted aniline trapping reagents uncovered a catalyst system that promotes efficient palladium-catalyzed cyclization-trapping with a series of substituted anilines of varying steric and electronic character. The results of the parallel optimization study illustrate the interdependency of the key reaction variables.  相似文献   
18.
Shen YH  Li SH  Li RT  Han QB  Zhao QS  Liang L  Sun HD  Lu Y  Cao P  Zheng QT 《Organic letters》2004,6(10):1593-1595
Both coriatone (1). a novel highly oxygenated picrotoxane-type sesquiterpene, and corianlactone (2). with an unprecedented sesquiterpene basic skeleton, named coriane, were isolated from Coriaria nepalensis Wall. The structures of 1 and 2 were determined by analysis of their two-dimensional NMR data, and the structure of 2 was confirmed by X-ray analysis. Compounds 1 and 2 showed no remarkable inhibitory activity toward K(562) cells. They are cytotoxic with IC(50) > 50 microg/mL (cis-platinim: IC(50) = 0.49 microg/mL).  相似文献   
19.
The photodegradation of 1,3-dimethyl-1-(2-(3-fluorobenzylthio)-1,3,4-thiadiazol-5-yl)urea as a thin film and in solution is described. The two photoproducts from thin-film photolysis were characterized by spectral and synthetic methods. The X-ray crystal structure of one of the photoproducts is also reported. The rearrangements were shown to involve an S-to-N benzyl migration, followed by a sulfur-oxygen substitution.  相似文献   
20.
1,2,3,4,8,9,10,11-Octahydro[1,4]diazepino[6,5,4-jk]earbazole (VIa) was synthesized from 2,3,4,5-tetrahydro-1H-benzodiazepine (la) via the route shown in Scheme 1. Other compounds which were prepared similarly are 3-acetyl-6-chloro-1,2,3,4,8,9,10,11-octahydro[1,4]diazepino-[6,5,4-jk]carbazole(Vb) and 3-methyl-1,2,3,4,8,9,10,11-octahydro[1,4]diazepino[6,5,4-jk]carb-azole (VIII). Chemical transformations which were carried out with VI and 3-acetyl-1,2,3,4,8,9, 10,11-octahydro[1,4]diazepino[6,5,4-jk]carbazole (Va) are also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号