首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   6篇
  国内免费   1篇
化学   85篇
晶体学   1篇
力学   12篇
数学   17篇
物理学   24篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   11篇
  2019年   7篇
  2018年   13篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   13篇
  2012年   13篇
  2011年   13篇
  2010年   8篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有139条查询结果,搜索用时 0 毫秒
11.
Journal of Thermal Analysis and Calorimetry - In situ composites are today being considered for industrial use, owing to the fewer production steps involved, lower production cost, and better...  相似文献   
12.
We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA), for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. FastPGA utilizes a new ranking strategy that utilizes more information about Pareto dominance among solutions and niching relations. New genetic operators are employed to enhance the proposed algorithm’s performance in terms of convergence behavior and computational effort as rapid convergence is of utmost concern and highly desired when solving expensive multiobjective optimization problems (MOPs). Computational results for a number of test problems indicate that FastPGA is a promising approach. FastPGA yields similar performance to that of the improved nondominated sorting genetic algorithm (NSGA-II), a widely-accepted benchmark in the MOEA research community. However, FastPGA outperforms NSGA-II when only a small number of solution evaluations are permitted, as would be the case when solving expensive MOPs.  相似文献   
13.
The objective of this study was to evaluate the influence of size and surface functionality of amorphous silica nanoparticles (SNPs) on their interaction with cultured cells. The intracellular uptake, phagocytic activity, and possible mechanisms of toxicity induced by SNPs were studied on murine alveolar macrophages and two epithelial cancer cell lines. It was found that phagocytic cells are more susceptible to amorphous SNPs than epithelial cells. SNPs with functionalized surfaces were capable to induce the formation of apoptotic cells to a higher extent than plain particles. Plain SNPs induced plasma membrane damage in phagocytic cells to a higher extent and caused cell death in a shorter period of time than surface-functionalized SNPs. The prevalence of necrotic mode of cell death was observed after treatment with plain SNPs. In the range studied surface functionality played an important role in SNPs toxicity.  相似文献   
14.
We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.  相似文献   
15.
With the increasing demands for electrical energy storage technologies,rechargeable zinc ion batteries (ZIBs) have been rapidly developed in recent years owing ...  相似文献   
16.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   
17.
In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project’s limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB.  相似文献   
18.
The polymerization of the photocleavable monomer, o‐nitrobenzyl methacrylate (NBMA), is investigated using photoinduced electron/energy transfer reversible addition‐fragmentation chain transfer polymerization. The polymerizations under visible red (λ max = 635 nm, 0.7 mW cm−2) and yellow (λ max = 560 nm, 9.7 mW cm−2) light are performed and demonstrate rational evidence of a controlled/living radical polymerization process. Well‐defined poly(o‐nitrobenzyl methacrylate) (PNBMA) homopolymers with good control over the molecular weight and polymer dispersity are successfully synthesized by varying the irradiation time and/or targeted degree of polymerization. Chain extension of a poly(oligo(ethylene glycol) methyl ether methacrylate) macro‐chain transfer agent with NBMA is carried out to fabricate photocleavable amphiphilic block copolymers (BCP). Finally, these self‐assembled BCP rapidly dissemble under UV light suggesting the photoresponsive character of NBMA is not altered during the polymerization under yellow or red light. Such photoresponsive polymers can be potentially used for the remote‐controlled delivery of therapeutic compounds.

  相似文献   

19.
Polyaniline-co-phenylenediamine (PAn/PDA) nanocomposite has been prepared in the aqueous medium using sodium dodecyl benzene sulfonate (DBSNa) and hydroxypropylcellulose (HPC) as a surfactant. The tests used in this research to characterize the products were SEM, TEM, FTIR, UV–Visible and TGA for morphology, particle size, chemical structure and stability. The results confirm that the spherical nanocomposites (40–90 nm) were formed with high thermal stability. It is shown in the results that the physicochemical properties of poly(alkyl substituted anilines) are depended on the substituent groups that are bonded to N-position. The prepared nanocomposites were then tested for the antibacterial properties against three pathogenic strains. The antibacterial properties of nanocomposites were investigated by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), and bactericidal kinetic methods. The disk diffusion result indicated that the diameter of the inhibition zones of PAn/PDA–HPC nanocomposite was 9, 11, and 10 mm against E. coli, P. aeruginosa, and S. aureus respectively. It was found that the value of MIC of PAn/PDA–HPC nanocomposite against E. coli, P. aeruginosa and S. aureus were 2.5, 1.25 and 2.5 mg/mL respectively. The evaluation results revealed the PAn/PDA–HPC nanocomposite exhibited excellent inhibitory activity against both gram-negative and gram-positive bacteria.  相似文献   
20.
Characterization of a polymer library engineered to enhance their ability to protect and deliver their nucleotide cargo to the cells is reported. The ζ-potential continuously increased with higher polymer:siRNA weight ratio, and the ζ-potential of lipid-modified polymers:siRNA complexes were higher than PEI2 at all ratios. At polymer:siRNA ratio of 1:1, all lipid-substituted polymers showed complete protection against degradation. Lipid-modified polymers significantly increased the cellular uptake of siRNA complexes and down-regulation of GAPDH and P-gp (max. 66% and 67%, respectively). The results indicate that hydrophobic modification of low molecular PEI could render this otherwise ineffective polymer to a safe effective delivery system for intracellular siRNA delivery and protein silencing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号