首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2062篇
  免费   99篇
  国内免费   53篇
化学   1514篇
晶体学   12篇
力学   94篇
综合类   2篇
数学   206篇
物理学   386篇
  2024年   3篇
  2023年   13篇
  2022年   46篇
  2021年   54篇
  2020年   70篇
  2019年   100篇
  2018年   105篇
  2017年   82篇
  2016年   154篇
  2015年   97篇
  2014年   143篇
  2013年   245篇
  2012年   174篇
  2011年   184篇
  2010年   131篇
  2009年   117篇
  2008年   144篇
  2007年   74篇
  2006年   69篇
  2005年   34篇
  2004年   52篇
  2003年   17篇
  2002年   19篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1970年   1篇
  1964年   1篇
  1941年   1篇
  1937年   2篇
  1927年   3篇
排序方式: 共有2214条查询结果,搜索用时 15 毫秒
81.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   
82.
Background: The study examined the oral microbiota, physiological and immunological changes in patients using thermoplastic retainers during three months of use. Methods: The study included several steps. Firstly, 10 swabs were collected from the buccal and palatal surfaces of the teeth of the patients, approximately 2 mL of saliva was collected from the same patients and 2 mL of saliva was collected from 10 healthy people to measure the pH and secretory IgA level. This was followed by the isolation and identfication of the bacterial isolates in the patient samples. Then, isolate susceptibility toward chlorhexidine (CHX) and their adhesion ability to thermoplastic retainer surfaces was measured. In addition to that the study estimated the numbers of Lactobacillus and Streptooccus mutans colonies during three months and finally, a comparsion of pH acidity and IgA level between the patients and healthy people was performed. The results showed the predominant bacteria during the three months were Lactobacillus spp. and Streptococcus spp. followed by different rates of other bacteria. Raoultella ornithinolytica showed more resistance to CHX while Lactobacillus spp. showed more sensitivity. Streptococcus mutans colony levels were higher than Lactobacillus spp. colonies during the three months, also S. mutans had the highest value in adherence to retainer thermoplastic. Finally, pH acidity showed a highly significant difference (p ≤ 0.05) in the third month, like IgA levels (p ≤ 0.05). Conclusions: According to the results obtained from the current study, the researchers noted that the thermoplastic retainers helped change the oral cavity environment.  相似文献   
83.
Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.  相似文献   
84.
Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.  相似文献   
85.
In the present work, the oxidation of acetaminophen in the absence and presence of eflornithine was electrochemically investigated by means of cyclic voltammetry at a glassy carbon electrode (GCE). Our results indicate that N‐acetyl‐p‐benzoquinone imine (NAPQI) produced from two‐electron electrochemical oxidation of acetaminophen participates in a Michael addition reaction with eflornithine via an ECE mechanism. This fact was used for the determination of eflornithine using differential pulse voltammetry (DPV) technique on the surface of β‐Cyclodextrin modified glassy carbon (β‐CD/GC) electrode. β‐CD/GC electrode was prepared through an electrodeposition procedure and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), Cyclic Voltammetry (CV), Field Emission Scanning Electron Microscopy (FESEM) and Energy‐dispersive X‐ray spectroscopy (EDS) techniques. Under optimum conditions, the β‐CD/GC electrode showed a good linearity as a function of the eflornithine concentration over the range from 5 to 100 μM with detection limit and quantification limit of 1.94 and 5.8 μM, respectively. Finally, the proposed protocol was confirmed to be successful in determination of eflornithine in human urine samples with good recovery, ranging from 97.2 % to 104.8 %.  相似文献   
86.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   
87.
Chloroform extract from the leaves of Turraea vogelii Hook f. ex Benth demonstrated cytotoxic activity against a chronic myelogenous leukemia cell, K-562 with IC50 of 14.27 μg/mL, while chloroform, ethyl acetate and methanol extracts from the stem of the plant inhibited K-562 cells growth with IC50 of 19.50, 24.10 and 85.40 μg/mL respectively. Bioactive chloroform extract of Turraea vogelii leaves affords two triterpenoids: oleana-12,15,20-trien-3β-ol (1), and oleana-11,13-dien-3β,16α,28-triol (2), with six fatty esters, ethyl hexaeicos-5-enoate (3), 3-hydroxy-1,2,3-propanetriyltris(tetadecanoate) (4), 1,2,3-propanetriyl(7Z,7′Z,7′′Z)tris(-7-hexadecenoate) (5), 1,2,3-propanetriyl(5Z,5′Z,5′′Z)tris(-5-hexadecenoate) (6), 1,2,3-propanetriyltris(octadecanoate) (7), and 2β-hydroxymethyl tetraeicosanoate (8). Tetradecane (9), four fatty acids: hexadecanoic acid (10), tetradecanoic acid (11), (Z)-9-eicosenoic acid (12), and ethyl tetradec-7-enoate (13) were isolated from chloroform extract of Turraea vogelii stem. 1,2,3-propanetriyltris(heptadecanoate) (14), (Z)-9-octadecenoic acid (15) and (Z)-7-tetradecenoic acid (16) were isolated from ethyl acetate extract while (Z)-5-pentadecenoic acid (17) was obtained from methanol extract of the plant stem. Compounds 1, 2, 5, 6, 11, 12, 15, 16 and 17 exhibited pronounced antiproliferative activity against K-562 cell lines.  相似文献   
88.
89.
Coordination compounds of Cu (II), Y (III), Zr (IV) and La (III) with the tetradentate Schiff base (H2L) obtained through the condensation of p‐phenylenediamine with salicylaldehyde under reflux conditions. The complexes were characterized by elemental analysis, magnetic susceptibility, molar conductance and also, with various spectroscopic techniques such as 1H NMR, UV–Vis., IR and XRD techniques. Electrolytic nature of complexes was ascertained by molar conductance values. In these four complexes, the ligand chelates act in a tetradentate manner via azomethine nitrogen and oxygen atoms of phenolic groups. Electronic spectroscopic data are in agreement with an octahedral geometrical structure. Thermal degradation analyses in nitrogen gas were used to investigate the number and location of water molecules. The chemical formulae of metal complexes were confirmed by microanalytical data. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* were calculated from the DTG curves using Coats Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. Nematicidal activities indicate that the ligand exhibit greater activity when compared to its complexes. In addition metal complexes displayed good moderate nematicidal activities.  相似文献   
90.
In the present article a formalism and the corresponding computational method is developed to take care of the variation of stabilization energy with solvent polarity in the process of adduct formation. For this purpose, a simple but physically insightful definition of “net desolvation energy” is proposed keeping in mind the sequence of events taking place in the process of adduct formation in a solvent. The approach used here is based on density functional reactivity theory (DFRT) and the representative samples chosen are adduct formation between (a) methyltrioxorhenium (MTO) and pyridine and (b) (azidomethyl)benzene and methylpropiolate. The generated data in case (a) is correlated with already known experimental parameter that is, formation constant (Kf). The observed trends claim that with the increase in solvent polarity interaction (or stabilization) energy becomes less negative which means that on increasing the solvent polarity the chances of adduct formation are less. This is further supported by calculating hardness values of adducts in different solvents which goes on decreasing with the increase in solvent polarity. Here, the computed data show that on increasing the polarity (i.e., dielectric constant) of the solvent, the “net desolvation energy” increases. Finally, when “net desolvation energy” is added to the stabilization energy obtained from DFRT the predicted trends are achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号