首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   2篇
化学   48篇
晶体学   2篇
数学   34篇
物理学   38篇
  2021年   1篇
  2020年   1篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1993年   7篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
排序方式: 共有122条查询结果,搜索用时 62 毫秒
71.
72.
Frequency-dependent electrochemical impedance spectroscopy has been used to characterize the changes in electrical response that accompany specific binding of a protein to its substrate, using the biotin-avidin system as a model. Our results show that avidin, at concentrations in the nanomolar range, can be detected electrically in a completely label-free manner under conditions of zero average current flow and without the use of any auxiliary redox agents. Impedance measurements performed on biotin-modified surfaces of gold, glassy carbon, and silicon were obtained over a wide frequency range, from 5 mHz to 1 MHz. On each biotin-modified surface, binding of avidin is most easily detected at low frequencies, <1 Hz. Electrical circuit modeling of the interface was used to relate the frequency-dependent electrical response to the physical structure of the interface before and after avidin binding. Electrical measurements were correlated with measurements of protein binding using fluorescently labeled avidin.  相似文献   
73.
The grafting of molecular layers to carbon-based materials provides a way to combine the high chemical and thermal stability of these materials with surface properties such as chemical recognition or reactivity. The functionalization of surfaces with ultraviolet light has emerged as a way to modify difficult-to-functionalize materials, such as diamond. We have performed a combined experimental and computational investigation of the photochemical reaction of terminal alkenes with hydrogen-terminated carbon surfaces. 1-Alkenes carrying various terminal functional groups (-NHCOCF3, -NHCOO(tert-butyl), -COOCH3, -CH3) were grafted from the neat liquids using 254 nm light. These layers were characterized using X-ray Photoelectron Spectroscopy and Infrared Reflectance Absorption Spectroscopy. Pronounced differences in reactivity were observed between the molecules: trifluoroacetamide-terminated alkenes grafted the fastest and yielded self-terminating layers after approximately 4 h. Ultraviolet photoelectron spectroscopy and photocurrent measurements show that the grafting reaction involves photoemission of electrons into the liquid. Density functional calculations show that the reactivities of the four molecules are correlated with their electron affinities, with the trifluoroacetamide group acting as the best electron acceptor and having the highest reactivity. Our results demonstrate that photoejection of electrons from the solid into the acceptor levels of the alkenes initiates the functionalization reaction and controls the overall rate. Finally, marginally reactive n-alkenes were induced to react and form dense monolayers by seeding the carbon surface with small amounts of a good electron acceptor, such as the trifluoroacetamide moiety. This study provides important new mechanistic insights into the use of ultraviolet light to initiate grafting of alkenes onto surfaces.  相似文献   
74.
We report a simple and inexpensive approach to directly assemble arrays of cadmium sulfide (CdS) semiconductors onto transparent flexible poly(ethylene terephthalate) (PET) sheets via a polymer-mediated selective nucleation and growth process from an aqueous solution. This strategy of assembling functional materials onto plastics utilizes the surface functional molecules of the UV photooxidation patterned polymer to direct the nucleation and growth of CdS. We demonstrated that such assembled structures are viable for flexible macroelectronics, as manifested by the fabrication of CdS photodetector arrays on PET that can withstand bending. The best devices exhibited a specific detectivity of 3 x 10(11) cm Hz(1/2) W(-1) at 514-nm excitation wavelength at a modulation frequency of 90 Hz at room temperature. This direct assembly strategy eliminates additional lithography and etching steps during the deposition of the active inorganic semiconductor layer, is general to other inorganic materials and plastic substrates, and can enable low-cost, wearable, and/or disposable flexible electronics.  相似文献   
75.
Yang W  Butler JE  Russell JN  Hamers RJ 《The Analyst》2007,132(4):296-306
The integration of biological molecules with semiconducting materials such as silicon and diamond has great potential for the development of new types of bioelectronic devices, such as biosensors and bioactuators. We have investigated the electrical properties of the antibody-antigen modified diamond and silicon surfaces using electrical impedance spectroscopy (EIS). Frequency dependent measurements at the open-circuit potential show: (a) significant changes in impedance at frequency >10(4) Hz when the surface immobilized IgG was exposed to anti-IgG, and (b) only little or no change when exposed to anti-IgM. Mott-Schottky measurements at high frequency (200 kHz) show that the impedance is dominated by the space charge layer of the semiconducting substrates. Silicon surfaces modified in a similar manner to the diamond surface are compared; n-type and p-type samples show complementary behavior, as expected for a field effect. We also show it is possible to directly observe antigen-antibody interaction at a fixed frequency in real time, and with no additional labeling.  相似文献   
76.
77.
This paper studies a class of delivery problems associated with the Chinese postman problem and a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph, a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally balanced, balanced, respectively). For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph. Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear time. Received May 20, 1997 / Revised version received August 18, 1998?Published online June 11, 1999  相似文献   
78.
While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.  相似文献   
79.
The UV-induced photochemical grafting of terminal alkenes has emerged as a versatile way to form molecular layers on semiconductor surfaces. Recent studies have shown that grafting reactions can be initiated by photoelectron emission into the reactant liquid as well as by excitation across the semiconductor band gap, but the relative importance of these two processes is expected to depend on the nature of the semiconductors, the reactant alkene and the excitation wavelength. Here we report a study of the wavelength-dependent photochemical grafting of alkenes onto single-crystal TiO(2) samples. Trifluoroacetamide-protected 10-aminododec-1-ene (TFAAD), 10-N-BOC-aminodec-1-ene (t-BOC), and 1-dodecene were used as model alkenes. On rutile (110), photons with energy above the band gap but below the expected work function are not effective at inducing grafting, while photons with energy sufficient to induce electronic transitions from the TiO(2) Fermi level to electronic acceptor states of the reactant molecules induce grafting. A comparison of rutile (110), rutile (001), anatase (001), and anatase (101) samples shows slightly enhanced grafting for rutile but no difference between crystal faces for a given crystal phase. Hydroxylation of the surface increases the reaction rate by lowering the work function and thereby facilitating photoelectron ejection into the adjacent alkene. These results demonstrate that photoelectron emission is the dominant mechanism responsible for grafting when using short-wavelength (~254 nm) light and suggest that photoemission events beginning on mid-gap states may play a crucial role.  相似文献   
80.
We present a novel method to achieve light trapping in thin film silicon solar cells. Unlike the commonly used surface textures, such as Asahi U-type TCO, that rely on light scattering phenomena, we employ embossed periodically arranged micro-pyramidal structures with feature sizes much larger than the wavelength of visible light. Angular resolved transmission of light through these substrates indeed showed diffraction patterns, unlike in the case of Asahi U-type substrates, which show angular resolved scattering. Single junction amorphous silicon (a-Si) solar cells made at 125 °C on the embossed structured polycarbonate (PC) substrates showed an increase in current density by 24% compared to a similar solar cell on a flat substrate. The band gap and thickness of the i-layer made by VHF PECVD are 1.9 eV and 270 nm respectively. A double p-layer (nc-Si:H/a-Si:H) was used to make proper contact with ZnO:Al TCO.Numerical modeling, called DokterDEP was performed to fit the dark and light current–voltage parameters and understand the characteristics of the cell. The output parameters from the modeling suggest that the cells have excellent built-in potential (Vbi). However, a rather high recombination voltage, Vμ, affects the FF and short circuit current density (Jsc) for the cells on Asahi as well as for the cells on PC. A rather high parallel resistance ? 1  cm2 (obtained from the modeling) infers that there is no significant shunt leakage, which is often observed for solar cells made at low temperatures on rough substrates. An efficiency of more than 6% for a cell on PC shows enormous potential of this type of light trapping structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号