首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   13篇
  国内免费   1篇
化学   147篇
晶体学   1篇
力学   12篇
数学   49篇
物理学   72篇
  2023年   3篇
  2022年   6篇
  2021年   2篇
  2020年   11篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   12篇
  2014年   10篇
  2013年   22篇
  2012年   18篇
  2011年   12篇
  2010年   15篇
  2009年   19篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   6篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有281条查询结果,搜索用时 0 毫秒
91.
The self-assembly of a blue-emitting light-harvesting organogelator and specifically designed highly fluorescent tetracenes yields nanofibers with tunable emissive properties. In particular, under near-UV excitation, white light emission is achieved in organogels and dry films of nanofibers. Confocal fluorescence microspectroscopy demonstrates that each individual nanofiber emits white light. A kinetic study shows that an energy transfer (ET) occurs between the blue-emitting anthracene derivative and the green- and red-emitting tetracenes, while inter-tetracene ETs also take place. Moreover, microscopy unravels that the nanofibers emit polarized emission in the blue spectral region, while at wavelengths higher than 500 nm the emission is not significantly polarized.  相似文献   
92.
本文报道了将市售CeO2作为一种高活性和可重复使用的催化剂用于无溶剂条件下氧化吲哚与醛的C3选择性烷基化反应.这种催化方法一般适用于不同的芳香族和脂肪族醛,得到3-烷基二烯-辛醇,产率高(87%–99%),立体选择性高(79%–93%为E-异构体).这是从氧化吲哚与各种脂肪族醛催化合成3-烯基氧化吲哚的首例.采用原位红外光谱研究了CeO2上Lewis酸位点与苯甲醛之间的Lewis酸-碱相互作用.不同粒径CeO2催化剂的构效关系研究表明,无缺陷CeO2表面是该反应的活性中心.  相似文献   
93.
M. Madani 《Molecular physics》2013,111(7):849-857
This paper reports the results of studies on the thermal and electrical properties of gamma radiation cured composites based on ethylene propylene dieyne rubber (EPDM) reinforced with different concentrations of micro- and nano-silica. The effect of gamma irradiation in the presence of ethylene glycol dimethacrylate (EGDM) as radiation sensitizer on melt flow properties of EPDM was also studied. Thermogravimetric studies of the composites show that the degradation of vulcanizates is controlled mainly by the silica type and its concentration. Increasing the amount of micro- or nano-silica in the vulcanizate decreases the maximum rate of decomposition of the major degradation step compared with that of the unfilled-cured one. The micro- and nano-composites exhibited remarkable heat resistance properties compared with that of the pure EPDM as the filler dispersion of silica inhibited the thermal degradation of the polymeric matrix, which led to the micro and nano-composites showing great improvement in thermal stability. A considerable change in decomposition rate is observed by increasing filler loading from 10 to 39 phr. The dielectric properties of such composites are affected by the silica type and concentration. The dielectric constant and ac-conductivity for all composites were found to increase with increasing silica loading, which is mainly due to the interfacial polarization. The ac-conductivity values of silica/EPDM composites exhibit a strong frequency dependence with both fillers used. The conductance and dielectric constant values have been fitted using a conduction model for all samples.  相似文献   
94.
Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.  相似文献   
95.
96.
The effects of nanoparticle dispersion on solidification of a Cu-n-hexadecane nanofluid inside a vertical enclosure are investigated numerically for different temperatures of the left vertical wall. An enthalpy porosity technique is used to trace the solid-liquid interface. The resulting nanoparticle-enhanced phase change materials (NEPCMs) exhibit enhanced thermal conductivity in comparison to the base material. The effect of the wall temperature and nanoparticle volume fraction are studied in terms of the solid fraction and the shape of the solid-liquid phase front. It has been found that a lower wall temperature and a higher nanoparticle volume fraction result in a larger solid fraction. The increase in the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage applications.  相似文献   
97.
Phenomenological kinetics (PK) is widely used in the study of the reaction rates in heterogeneous catalysis, and it is an important aid in reactor design. PK makes simplifying assumptions: It neglects the role of fluctuations, assumes that there is no correlation between the locations of the reactants on the surface, and considers the reacting mixture to be an ideal solution. In this article we test to what extent these assumptions damage the theory. In practice the PK rate equations are used by adjusting the rate constants to fit the results of the experiments. However, there are numerous examples where a mechanism fitted the data and was shown later to be erroneous or where two mutually exclusive mechanisms fitted well the same set of data. Because of this, we compare the PK equations to "computer experiments" that use kinetic Monte Carlo (kMC) simulations. Unlike in real experiments, in kMC the structure of the surface, the reaction mechanism, and the rate constants are known. Therefore, any discrepancy between PK and kMC must be attributed to an intrinsic failure of PK. We find that the results obtained by solving the PK equations and those obtained from kMC, while using the same rate constants and the same reactions, do not agree. Moreover, when we vary the rate constants in the PK model to fit the turnover frequencies produced by kMC, we find that the fit is not adequate and that the rate constants that give the best fit are very different from the rate constants used in kMC. The discrepancy between PK and kMC for the model of CO oxidation used here is surprising since the kMC model contains no lateral interactions that would make the coverage of the reactants spatially inhomogeneous. Nevertheless, such inhomogeneities are created by the interplay between the rate of adsorption, of desorption, and of vacancy creation by the chemical reactions.  相似文献   
98.
99.
Summary: Linear poly (ethylene-co-1-butene) was produced through two-step polymerization in one reactor using a Ziegler-Natta catalyst, where in the first step, low molecular weight homopolymer of ethylene in the presence of hydrogen and in the next step, high molecular weight copolymer of ethylene with 1-butene in the absence of hydrogen were produced. Molecular weight distribution of bimodal polyethylene was tailored through adjustment of polymerization time of each stage and hydrogen concentration of the first stage. Increasing hydrogen concentration shifted the molecular weight distribution curve to the lower molecular weights and broadened molecular weight distribution while interestingly increased high molecular weight incorporation of copolymer produced in the second stage due to increasing of reaction rate in the second step. To achieve bimodal molecular weight distribution, the polymerization times of the first and the second steps, which are highly dependent on the amount of hydrogen, were adjusted properly. The effects of the mentioned parameters on the processability as well as rheological properties of some samples were investigated. The rheological results showed shear thinning behavior of all specimens and confirmed the changes in molecular weight and molecular weight distribution. It was also demonstrated that the melt miscibility between low molecular weight and high molecular weight fractions improved with increasing of chains having very low molecular weight.  相似文献   
100.
EDTA forms stable complexes with plutonium that are integral to nuclear material processing, radionuclide decontamination, and the potentially enhanced transport of environmental contamination. To characterize the aqueous Pu(4+/3+)EDTA species formed under the wide range of conditions of these processes, potentiometry, spectrophotometry, and cyclic voltammetry were used to measure solution equilibria. The results reveal new EDTA and mixed-ligand complexes and provide more accurate stability constants for previously identified species. In acidic solution (pH < 4) and at 1:1 ligand to metal ratio, PuY (where Y4- is the tetra-anion of EDTA) is the predominant species, with an overall formation constant of log beta110 = 26.44. At higher pH, the hydrolysis species, PuY(OH)- and PuY(OH)(2)2-, form with the corresponding overall stability constants log beta(11 - 1) = 21.95 and log beta(11 - 2) = 15.29. The redox potential of the complex PuY at pH = 2.3 was determined to be E(1/2) = 342 mV. The correlation between redox potential, pH, and the protonation state of PuY- was derived to estimate the redox potential of the Pu(4+/3+)Y complex as a function of pH. Under conditions of neutral pH and excess EDTA relative to Pu4+, PuY(2)4- forms with an overall formation constant of log beta120 = 35.39. In the presence of ancillary ligands, mixed-ligand complexes form, as exemplified by the citrate and carbonate complexes PuY(citrate)3- (log beta1101 = 33.45) and PuY(carbonate)2- (log beta1101 = 35.51). Cyclic voltammetry shows irreversible electrochemical behavior for these coordinatively saturated Pu4+ complexes: The reduction wave is shifted approximately -400 mV from the reduction wave of the complex PuY, while the oxidation wave is invariant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号