首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
化学   54篇
晶体学   2篇
物理学   11篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1998年   3篇
  1997年   2篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1973年   2篇
排序方式: 共有67条查询结果,搜索用时 0 毫秒
21.
22.
To enable the development of a tandem mass spectrometry (MS/MS) based methodology for selective protein identification and differential quantitative analysis, a novel derivatization strategy is proposed, based on the formation of a "fixed-charge" sulfonium ion on the side-chain of a methionine amino acid residue contained within a protein or peptide of interest. The gas-phase fragmentation behavior of these side chain fixed charge sulfonium ion containing peptides is observed to result in exclusive loss of the derivatized side chain and the formation of a single characteristic product ion, independently of charge state or amino acid composition. Thus, fixed charge containing peptide ions may be selectively identified from complex mixtures, for example, by selective neutral loss scan mode MS/MS methods. Further structural interrogation of identified peptide ions may be achieved by subjecting the characteristic MS/MS product ion to multistage MS/MS (MS3) in a quadrupole ion trap mass spectrometer, or by energy resolved "pseudo" MS3 in a triple quadrupole mass spectrometer. The general principles underlying this fixed charge derivatization approach are demonstrated here by MS/MS, MS3 and "pseudo" MS3 analysis of side chain fixed-charge sulfonium ion derivatives of peptides containing methionine formed by reaction with phenacylbromide. Incorporation of "light" and "heavy" isotopically encoded labels into the fixed-charge derivatives facilitates the application of this method to the quantitative analysis of differential protein expression, via measurement of the relative abundances of the neutral loss product ions generated by dissociation of the light and heavy labeled peptide ions. This approach, termed "selective extraction of labeled entities by charge derivatization and tandem mass spectrometry" (SELECT), thereby offers the potential for significantly improved sensitivity and selectivity for the identification and quantitative analysis of peptides or proteins containing selected structural features, without requirement for extensive fractionation or otherwise enrichment from a complex mixture prior to analysis.  相似文献   
23.
The benzoxyl radical is a key intermediate in the combustion of toluene and other aromatic hydrocarbons, yet relatively little experimental work has been performed on this species. Here, a combination of electrospray ionization (ESI), multistage mass spectrometry experiments, and density functional theory (DFT) calculations are used to examine the formation and fragmentation of a benzoxyl (benzyloxyl) distonic radical anion. Excited 4-carboxylatobenzoxyl radical anions were produced via two methods: (1) collision induced dissociation (CID) of the nitrate ester 4-(nitrooxymethyl)benzoate, O2CC6H4CH2ONO2, and (2) reaction of ozone with the 4-carboxylatobenzyl radical anion, O2CC6H4CH2 ?. In neither case was the stabilized O2CC6H4CH2O? radical anion intermediate detected. Instead, dissociation products at m/z 121 and 149 were observed. These products are attributed to benzaldehyde (O2 -CC6H4CHO) and benzene (O2CC6H5) products from respective loss of H and HCO radicals in the vibrationally excited benzoxyl intermediate. In no experiments was a product at m/z 120 (i.e., O2CC6H4 ?) detected, corresponding to absence of the commonly assumed phenyl radical + CH2=O channel. The results reported suggest that distonic ions are useful surrogates for reactive intermediates formed in combustion chemistry.
Figure
?  相似文献   
24.
Radical anions have been formed via electron transfer from multiply charged 5′-d(AAA)-3′ and 5′-d(AAAA)-3′ anions to CCl3 +. These ions have been isolated in a quadrupole ion trap operated with helium bath gas at a pressure of 1 mtorr and subjected to resonance excitation (i. e., conventional ion trap collisional activation). Collisional activation of the even-electron species of the same charge state formed directly via electrospray was also performed by using essentially identical conditions. The collisional activation data can be compared directly without ambiguity arising from differences in parent ion internal energies and/or dissociation time frames. Both the odd- and even-electron anions yield extensive sequence-informative fragmentation but show significant differences in the extent of nucleobase loss and in the relative contributions from the various sequence diagnostic dissociation channels. The results of this study indicate that radical anions derived from multiply deprotonated oligo-deoxynucleotides that survive the electron transfer process are stable with respect to fragmentation in the ion trap environment under normal storage conditions and that the unimolecular dissociation behavior of these ions differs from the even-electron anions of the same charge state. These findings suggest, therefore, that odd- and even-electron anions might be used to provide complementary sequence information in cases in which neither ion type provides the full sequence.  相似文献   
25.
The gas phase fragmentation reactions of protonated serine and its YNHCH(CH2X)CO2H derivatives, β-chloroalanine, S-methyl cysteine, O-methyl serine, and O-phosphoserine, as well as the corresponding N-acetyl model peptides have been examined via electrospray ionization tandem mass spectrometry (MS/MS). In particular, the competition between losses from the side chain and the combined loss of H2O and CO from the C-terminal carboxyl group of the amino acids or H2O or CH2CO from the N-acetyl model peptides are compared. In this manner the effect of the leaving group (Y = H or CH3CO, vary X) or of the neighboring group can be examined. It was found that the amount of HX lost from the side chain increases with the proton affinity of X [OP(O)(OH)2 > OCH3 ≈ OH > Cl]. The ion due to the side chain loss of H2O from the model peptide N-acetyl serine is more abundant than that from protonated serine, suggesting that the N-acetyl group is a better neighboring group than the amino group. Ab initio calculations at the MP2(FC)/6-31G*//HF/6-31G* level of theory suggest that this effect is due to the transition state barrier for water loss from protonated N-acetyl serine being lower than that for protonated serine. The mechanism for side chain loss has been examined using MS3 tandem mass spectrometry, independent synthesis of proposed product ion structures combined with MS/MS, and hydrogen/deuterium exchange. Neighboring group rather than cis 1,2 elimination processes dominate in all cases. In particular, the loss of H3PO4 from O-phosphoserine and N-acetyl O-phosphoserine is shown to yield a 3-membered aziridine ring and 5-membered oxazoline ring, respectively, and not the dehydroalanine moiety. This is in contrast to results presented by DeGnore and Qin (J. Am. Soc. Mass Spectrom. 1998, 9, 1175–1188) for the loss of H3PO4 from larger peptides, where dehydroalanine was observed. Alternate mechanisms to cis 1,2 elimination, for the formation of dehydroalanine in larger phosphoserine or phosphothreonine containing peptides, are proposed.  相似文献   
26.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   
27.
An incoherent Doppler lidar for ground-based atmospheric wind profiling   总被引:16,自引:0,他引:16  
Liu  Z.S.  Chen  W.B.  Zhang  T.L.  Hair  J.W.  She  C.Y. 《Applied physics. B, Lasers and optics》1997,64(5):561-566
Received: 17 April 1996/Revised version: 7 October 1996  相似文献   
28.
    
Ohne Zusammenfassung  相似文献   
29.
Novel supramolecular architectures are observed in the solid state structures of [AlMe(C6F5)(mu-Me)]2 (1) and Ga(C6F5)2Me (2) via pi-pi stacking between C6F5 rings and intermolecular aryl-F-->Ga interactions, respectively.  相似文献   
30.
[首页] « 上一页 [1] [2] 3 [4] [5] [6] [7] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号