首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18550篇
  免费   3292篇
  国内免费   1686篇
化学   12994篇
晶体学   182篇
力学   1028篇
综合类   70篇
数学   2033篇
物理学   7221篇
  2024年   39篇
  2023年   391篇
  2022年   530篇
  2021年   672篇
  2020年   731篇
  2019年   736篇
  2018年   714篇
  2017年   564篇
  2016年   960篇
  2015年   823篇
  2014年   1053篇
  2013年   1390篇
  2012年   1712篇
  2011年   1767篇
  2010年   1167篇
  2009年   1089篇
  2008年   1199篇
  2007年   1043篇
  2006年   992篇
  2005年   789篇
  2004年   603篇
  2003年   426篇
  2002年   435篇
  2001年   336篇
  2000年   279篇
  1999年   389篇
  1998年   276篇
  1997年   294篇
  1996年   284篇
  1995年   246篇
  1994年   209篇
  1993年   215篇
  1992年   144篇
  1991年   160篇
  1990年   130篇
  1989年   99篇
  1988年   89篇
  1987年   71篇
  1986年   68篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   23篇
  1980年   26篇
  1978年   13篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Two different eight-arm star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates were synthesized through atom transfer radical polymerization (ATRP) and applied for hydrophobic honeycomb-patterned porous films through the breath figure (BF) method. The structure of polymers was characterized by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC), and surface analysis was featured by X-ray photoelectron spectroscopy (XPS). Depending on the influences of polymer architectures, solvents utilized, and solution concentrations, honeycomb-patterned porous films were obtained. It could be found that the introduction of fluorine components was a favorable condition for BF formation and chloroform (CHCl3) utilized as solvent with an appropriate concentration of 30 mg/mL was the best condition for these hydrophobic honeycomb-patterned porous films. Meanwhile, the obtained honeycomb films could be retained after long-time preservation in an acid-base condition, which shows a great potential in filtration, cell culture, tissue engineering, and marine antifouling applications.  相似文献   
992.
A specific procedure is proposed for investigating the chemical speciation of zinc (Zn) in plant tissues, viz., the extraction of Zn compounds from Plantago lanceolata L. followed by the chromatographic separation and inductively coupled plasma mass spectrometry (ICP-MS) identification of these compounds. In order to separate the Zn compounds, both size-exclusion (SEC) and ionexchange liquid chromatography (IC) were used in direct sequential and reverse sequential modes. In the direct sequential mode, the entire extract undergoes SEC separation and then the individual fractions are injected onto the ion-exchange column. The molecular size distribution is evaluated by SEC coupled on-line to the UV detector. In the reverse sequential mode, the entire extract undergoes the ion-exchange chromatographic separation and then the individual fractions are injected onto the size-exclusion column. The identification of Zn incorporated into the compounds is further performed using ICP-MS. This procedure is particularly useful in speciation studies when identification of the individual components of the element is problematic due to the lack of suitable standard substances, as is the case for Zn compounds. The proposed procedure facilitates assignment of the signals to the individual components of the fractions for both types of chromatography, thus rendering the chemical speciation of Zn possible when the lack of suitable standard substances impedes the identification of individual components.  相似文献   
993.
A novel 5,15-di-[4-carboxylatomethoxy]phenyl-10,20-diphenylporphyrin, its copper complex and the corresponding metalloporphyrin-TiO2 photocatalyst were synthesized and characterized by DRS, SEM, XRD, and FT–IR. The photocatalytic effects of anataseTiO2 impregnated with this copper(II) porphyrin was investigated by photodegradation of 4-nitrophenol(4-NP) in aqueous solution under Xenon lamp irradiation. The results indicated that the photoactivity of copper(II) porphyrin-TiO2 composite was evidently enhanced by the interaction between carboxyl of the porphyrin molecule and hydroxyls anchored on the TiO2. Futhermore, the copper(II) carboxylic porphyrin displayed good adsorption behavior and activity of the dye-sensized TiO2 system.  相似文献   
994.
Biocompatible and proteolysis-resistant poly-β-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of β-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3)2. We have developed a controllable and water-insensitive ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTAs) that can be operated in open vessels to prepare poly-β-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β-NTA polymerization and resulting poly-β-peptides, which is validated by the finding of a HDP-mimicking poly-β-peptide with potent antimicrobial activities. The living β-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-β-peptide.  相似文献   
995.
Most NIR-IIb fluorophores are nanoparticle-based probes with long retention (≈1 month or longer) in the body. Here, we applied a novel cross-linked coating to functionalize core/shell lead sulfide/cadmium sulfide quantum dots (PbS/CdS QDs) emitting at ≈1600 nm. The coating was comprised of an amphiphilic polymer followed by three crosslinked amphiphilic polymeric layers (P3 coating), imparting high biocompatibility and >90 % excretion of QDs within 2 weeks of intravenous administration. The P3-QDs were conjugated to an engineered anti-CD8 diabody (Cys-diabody) for in vivo molecular imaging of CD8+ cytotoxic T lymphocytes (CTLs) in response to anti-PD-L1 therapy. Two-plex molecular imaging in combination with down-conversion Er nanoparticles (ErNPs) was performed for real-time in vivo monitoring of PD-L1 positive tumor cells and CTLs with cellular resolution by non-invasive NIR-IIb light sheet microscopy. Imaging of angiogenesis in the tumor microenvironment and of lymph nodes deep in the body with a signal-to-background ratio of up to ≈170 was also achieved using P3-QDs.  相似文献   
996.
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   
997.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   
998.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
999.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   
1000.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C−H group and an electron-rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C−H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol−1. Ab-initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen-bond making and breaking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号