首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   180篇
  国内免费   100篇
化学   711篇
晶体学   5篇
力学   85篇
综合类   2篇
数学   81篇
物理学   417篇
  2024年   2篇
  2023年   21篇
  2022年   21篇
  2021年   27篇
  2020年   37篇
  2019年   52篇
  2018年   30篇
  2017年   24篇
  2016年   48篇
  2015年   42篇
  2014年   37篇
  2013年   67篇
  2012年   108篇
  2011年   114篇
  2010年   74篇
  2009年   61篇
  2008年   64篇
  2007年   48篇
  2006年   45篇
  2005年   38篇
  2004年   45篇
  2003年   22篇
  2002年   22篇
  2001年   20篇
  2000年   28篇
  1999年   31篇
  1998年   23篇
  1997年   16篇
  1996年   26篇
  1995年   21篇
  1994年   10篇
  1993年   14篇
  1992年   10篇
  1991年   12篇
  1990年   12篇
  1989年   6篇
  1988年   1篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1301条查询结果,搜索用时 328 毫秒
121.
Manipulating recognition and transport at the nanoscale holds great promise for technological breakthroughs in energy conversion, catalysis, and information processing. Living systems evolve specialized membrane proteins (MPs) embedded in lipid bilayers to exquisitely control communications across the insulating membrane boundaries. Harnessing MP functions directly in synthetic systems opens up enormous opportunities for nanotechnology, but there exist fundamental challenges of how to address the labile nature of lipid bilayers that renders them of inadequate value under a broad range of harsh non-biological conditions, and how to reconstitute MPs coherently in two or three dimensions into non-lipid-based artificial membranes. Here we show that amphiphilic block copolymers can be designed to direct proteorhodopsin reconstitution and formation of hierarchically ordered proteopolymer membrane arrays spontaneously, even when the membrane-forming polymer blocks are in entangled states. These findings unfold a viable approach for the development of robust and chemically versatile nanomembranes with MP-regulated recognition and transport performance.  相似文献   
122.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   
123.
Fe-doped cesium titanate was obtained by a solid state reaction with a mixture of Cs(2)CO(3), TiO(2), and Fe(2)O(3). ZnO-pillared doped titanate nanocomposite was successfully fabricated by exfoliating doped titanate and restacking its nanosheets with ZnO nanoparticles. The resulting nanocomposite was characterized by powder X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, N(2) adsorption-desorption measurement, thermogravimetric analysis and UV-vis spectroscopy. It was revealed that the present nanocomposite exhibits greatly increased specific surface area with mesoporous texture and that there exists an electronic coupling between the host sheets and the guest nanoparticles in the pillared system. The results of degradation of methylene blue under visible light radiation suggest that doping iron ions improves the material spectral response region and that hybridizing with ZnO nanopillars can suppress the recombination of photogenerated electron-hole pairs.  相似文献   
124.
Xiang S  Huang J  Li L  Zhang J  Jiang L  Kuang X  Su CY 《Inorganic chemistry》2011,50(5):1743-1748
Two nanotubular metal-organic frameworks (MOFs), {Cu(L1)·2H(2)O·1.5DMF}(∞) (1) and {Cu(2)(L2)(2)(H(2)O)(2)·7H(2)O·3DMF}(∞) (2), with novel topologies have been constructed based on Cu(2+), 5-(pyridin-4-yl)isophthalic acid (L1) and 5-(pyridin-3-yl)isophthalic acid (L2), respectively. Two MOFs were characterized by IR spectroscopy, thermogravimetry, single-crystal, and powder X-ray diffraction methods. Network analysis reveals a two-nodal (3,6)-connected (4·6(2))(2)(4(2)·6(10)·8(3)) net and a three-nodal (3,4)-connected (4·8(2))(4)(4(2)·8(2)·10(2))(2)(8(4)·12(2)) net. Interpenetration is inherently prevented by both of the topologies of the frameworks. The porosity of MOF 1 was confirmed by N(2) and CO(2) gas adsorption investigations. MOF 1 exhibits remarkable hydrogen sorption hysteresis at low pressure and a H(2) uptake capacity of 1.05 wt% at 77 K and 1 atm.  相似文献   
125.
A novel efficient metal free sensitizer containing asymmetric double donor-π-acceptor chains (DC) was synthesized for dye-sensitized solar cells (DSSCs). Comparing to 3.80%, 4.40% and 4.64% for the DSSCs based on the dyes with single chain (SC1, SC2) and cosensitizers (SC1 + SC2), the overall conversion efficiency reaches 6.06% for DC-sensitized solar cells as a result of its longer electron lifetime and higher incident monochromatic photon-to-current conversion efficiency.  相似文献   
126.
A new red emitting BaB2O4: Eu3+ phosphor was synthesized by solid-state reaction method. X-ray powder diffraction (XRD) analysis confirmed the monoclinic formation of BaB2O4. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular grains with heavy agglomerate phenomena. Upon excitation with 394 nm light, the BaB2O4: Eu3+ phosphor shows bright red emissions with the highest photoluminescence (PL) intensity at 611 nm due to 5D0→7F2 transitions of Eu3+ ions. The CIE chromaticity coordinates are calculated from the emission spectrum to be x=0.64, y=0.35. The effects of the Eu3+ concentration on the PL were investigated. The results showed that the optimum concentration of Eu3+ in BaB2O4 host is 6 mol% and the dipole-dipole interaction plays the major role in the mechanism of concentration quenching of Eu3+ in BaB2O4: Eu3+ phosphor. The effect of charge compensation on the emission intensity was also studied. The charge compensations of Li+, Na+ and K+ anions all increased the luminescent intensity of BaB2O4: Eu3+. K+ anion gave the best improvement to enhance the intensity of the emission, indicating K+ is the optimal charge compensator. All properties show that this phosphor could serve as a potential candidate for application as a red phosphor for NUV chip LED.  相似文献   
127.
The electron paramagnetic resonance (EPR) parameters (g factor, the hyperfine structure constant A and the superhyperfine parameters A' and B') for Mn(2+) in the fluoroperovskites ABF(3) (A=K and Cs; B=Zn, Mg, Cd and Ca) are theoretically investigated from the perturbation formulas of these parameters for a 3d(5) ion under ideal octahedra. In the above treatments, not only the crystal-field mechanism but also the charge transfer mechanism is considered uniformly on the basis of the cluster approach. The theoretical EPR parameters are in good agreement with the experimental data. The charge transfer contribution to the g-shift Δg (≈g-g(s), where g(s)≈2.0023 is the spin-only value) is opposite (positive) in sign and comparable in magnitude to the crystal-field one. Nevertheless, the charge transfer contribution to the hyperfine structure constant shows the same sign and about 10% that of the crystal-field one. So, the conventional argument that the charge transfer contributions to the zero-field splittings are negligible for 3d(5) ions under low symmetrically distorted fluorine octahedra is proved no longer valid for the Δg analysis of ABF(3):Mn(2+) in view of the dominant second-order charge transfer perturbation terms. The unpaired spin densities of the fluorine 2s, 2p σ and 2p π orbitals are determined from the quantitative dependences upon the related molecular orbital coefficients, rather than obtained by fitting the observed superhyperfine parameters in the previous works.  相似文献   
128.
129.
Under the assumption of the quasi-static electric and magnetic fields the electro-magneto-elastic analysis including medium and its environment is studied in this paper. The complete governing equations under the finite deformation can be derived from the physical variational principle. In the physical variational principle the variations of the electric potential and magnetic potential are divided into local variations and migratory variations. From the virtual change of the sum of the electromagnetic energy and the couple energy produced by the migratory variation we can get the electromagnetic force and in this case the virtual variation of the volume should be considered. It is also found that the Maxwell stress is directly related to the strain in a material with piezoelectric or piezomagnetic behavior for the finite deformation case. The thin plate theory in first order is derived from the general theory in this paper and the Maxwell stress is naturally included in the governing equations.  相似文献   
130.
A methodology is developed for the numerical solution to the sample-based optimal transport and Wasserstein barycenter problems. The procedure is based on a characterization of the barycenter and of the McCann interpolants that permits the decomposition of the global problem under consideration into various local problems where the distance among successive distributions is small. These local problems can be formulated in terms of feature functions and shown to have a unique minimizer that solves a nonlinear system of equations. Both the theoretical underpinnings of the methodology and its practical implementation are developed, and illustrated with synthetic and real data sets. © 2019 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号