首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   1篇
  国内免费   4篇
化学   94篇
晶体学   1篇
力学   3篇
数学   4篇
物理学   28篇
  2024年   3篇
  2023年   3篇
  2022年   14篇
  2021年   27篇
  2020年   11篇
  2019年   8篇
  2018年   7篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   9篇
  2011年   10篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
21.
Derivatives of ninhydrin are extensively used in the field of forensic sciences as important latent fingerprint reagents. Many works have been performed upon their synthesis and reactivity, but there are many spaces to work on the compounds of quinoline‐2,3,4(1H)‐triones—analogues of ninhydrin, in both dimensions: synthesis and reactivity, and according to the best of our knowledge, not a single detailed or short compiled article has been published for these compounds. This review briefly summarizes the chemistry of quinoline‐2,3,4(1H)‐triones.  相似文献   
22.
The fabrication of nanoparticles has been perused as a topic of critical importance in the present decades. Biosynthesis of nanoparticles employs plants extract instead of harmful chemicals. These plant extracts act as reducing and capping agents which is the most appropriate and eco-friendly method among all the preparative routs. In present study, the magnetite nanoparticles (Fe3O4-NPs) were fabricated using rapid, single step and benign biosynthetic rout by reduction of ferric nitrate nonahydrate solution with Ferocactus echidne aqueous extract containing ascorbic acid as a main reducing and capping agent. The structural and morphological properties of prepared iron oxide nanoparticles were investigated by Powder X-ray diffraction and scanning electron microscopy. The size of the synthesized nanoparticles was approximately 15 ± 2 nm as determined by Scherrer equation. The biosynthetically fabricated nanoparticles were employed as catalyst for pyrolysis of nutshells to produce biofuel. Catalytic pyrolysis of biomass yields biofuel as an alternative source of energy and chemical feed stock. Effect of temperature, heating rate, and amount of catalyst were investigated on conversion percentage and product yields. Aniline point, carbon residue, and cetane number of prepared bio-oil were also determined.  相似文献   
23.
Metal oxide nanoparticles synthesized by the biological method represent the most recent research in nanotechnology. This study reports the rapid and ecofriendly approach for the synthesis of CeO2 nanoparticles mediated using the Abelmoschus esculentus extract. The medicinal plant extract acts as both a reducing and stabilizing agent. The characterization of CeO2 NPs was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxicity of green synthesized CeO2 was assessed against cervical cancerous cells (HeLa). The exposure of CeO2 to HeLa cells at 10–125 µg/mL caused a loss in cellular viability against cervical cancerous cells in a dose-dependent manner. The antibacterial activity of the CeO2 was assessed against S. aureus and K. pneumonia. A significant improvement in wound-healing progression was observed when cerium oxide nanoparticles were incorporated into the chitosan hydrogel membrane as a wound dressing.  相似文献   
24.
25.
Journal of Thermal Analysis and Calorimetry - Willemite is an inorganic semiconductor material used for optoelectronic applications. The present study purposes a new polymer thermal treatment...  相似文献   
26.
Journal of Thermal Analysis and Calorimetry -  相似文献   
27.
Journal of Thermal Analysis and Calorimetry - Owing to the high nucleation site density and relatively robust behavior, sintered coated surfaces are of great interest for thermal management via...  相似文献   
28.
Journal of Thermal Analysis and Calorimetry - This article discusses the effect of microwave irradiation on the thermal properties of poly(vinyl alcohol)/graphene nanocomposites, prepared using a...  相似文献   
29.
The present study reports the green synthesis of starch–maleate (SM) at ambient temperature in solvent-free system using Rhizopus arrhizus lipase as a biocatalyst and maleic acid (MA) as an esterification agent. The synthetic scheme was found to be efficient, economical, and ecofriendly. The newly synthesized SM samples were characterized using Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopic techniques. The degree of substitution (DS) was found in the range of 0.53–0.62. Moreover, DS was found to be temperature and time-dependent. X-ray diffraction (XRD) exhibited that maleation did not change the crystalline nature of native starch. Scanning electron microscopy (SEM) revealed that size of SM granules was in the range of 4–18 µm. The activation energy (Ea) of SM formation was calculated to be 42.94 kcal mol?1 which clearly indicated the effective and rapid interaction of functional groups. Hence, the solvent-free solid-state synthetic methodology proved to be excellent for the synthesis of novel biomaterials with appreciable high DS for drug delivery and sorption of heavy metal ions from water.  相似文献   
30.
In recent years, smart polymers (SPs), which are also referred to as bio-responsive polymers, have gained considerable attention as a unique class of polymers and their applications have been increasing significantly. These so-called “smart” polymers, either synthetic or biological, have been defined as “polymers designed to respond or undergo physical and structural conformational changes/rearrangement in response to slight changes in their surrounding environment”. They are categorized as thermo-, pH-, electro- and magneto-responsive polymers. The advances in upstream bio-production stages and the high cost associated with downstream chromatographic techniques have pushed the development of new alternatives. In this context, the use of SPs, in combination with non-chromatographic technologies, represents a useful approach to the development of new downstream operation units. With the key scientific advancements, SPs have become the “next generation” of the bio-separation tool for eco-friendlier and cost-effective purification. This review describes the different characteristics and classifications of various “smart” polymers available for use in bio-separation strategy. Focus is also given to the recent advances in SP inclusion in the improvement of alternative non-chromatographic methods in downstream bioprocessings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号