首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   12篇
化学   247篇
晶体学   2篇
力学   2篇
数学   12篇
物理学   28篇
  2023年   1篇
  2022年   9篇
  2021年   17篇
  2020年   9篇
  2019年   8篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   14篇
  2012年   22篇
  2011年   27篇
  2010年   9篇
  2009年   12篇
  2008年   17篇
  2007年   9篇
  2006年   11篇
  2005年   7篇
  2004年   14篇
  2003年   14篇
  2002年   18篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有291条查询结果,搜索用时 37 毫秒
141.
The combination of nanotechnology with molecular imaging has great potential for the development of diagnostics and therapeutics, and multimodal imaging enables versatile applications from cell tracking in animals to clinical applications. Herein, we report a multimodal nanoparticle imaging system that is capable of concurrent fluorescence, bioluminescence, bioluminescence resonance energy transfer (BRET), positron emission tomography (PET) and magnetic resonance (MR) imaging in vivo. A cobalt–ferrite nanoparticle surrounded by rhodamine (MF) was conjugated with luciferase (MFB) and p‐SCN? bn? NOTA (2‐(4‐isothiocyanatobenzyl)‐1,4,7‐triazacyclonane‐1,4,7‐triacetic acid) followed by 68GaCl3 (magnetic‐fluorescent‐bioluminescent‐radioisotopic particle, MFBR). Confocal microscopy revealed good transfection efficiency of MFB into cells and BRET was also observed in MFB. A good correlation among rhodamine, luciferase, and 68GaCl3 was found in MFBR, and the activities of each imaging modality increased dose‐dependently with the amount of MFBR in the C6 cells. In vivo optical images were acquired from the thighs of mice after intramuscular and subcutaneous injections of MFBR‐laden cells. MicroPET and MR images showed intense radioactivity and ferromagnetic intensities with MFBR‐laden cells. The multimodal imaging strategy could be used as potential imaging tools to track cells.  相似文献   
142.
Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3β. In addition, the protective effect of clusterin is independent on its receptor megalin, because inhibition of megalin has no effect on clusterin-mediated Akt/GSK-3β phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3β signaling mediates anti-apoptotic effect of clusterin.  相似文献   
143.
One new megastigmane glycoside, ficalloside (1), and eleven known compounds, were isolated from methanol extract of Ficus callosa leaves by repeated column chromatography. Their structures were established on the basis of spectral and chemical evidence. The antioxidant activities of these compounds were measured using the oxygen radical absorbance capacity (ORAC) assay. Compound 8 exhibited potent antioxidant activity of 10.6 microM trolox equivalents at the concentration of 2 microM. At this concentration, compounds 4-7 and 9-12 showed significant antioxidant activity with ranging of 2.1-6.1 microM trolox equivalents.  相似文献   
144.
Herein, we describe the synthesis of fluorinated polythienothiophene-co-benzodithiophenes (PTBFs) and the characterization of their physical properties, especially their performance in solar cells. Fluorination of the polymer backbone lowered both the HOMO and LUMO energy levels and simultaneously widened the energy bandgap of the polymer (0.1-0.2 eV). Incorporation of fluorine into the various positions of the polymer backbone significantly affected the solar cells' power conversion efficiency from 2.3% to 7.2%. Detailed studies revealed that the polymer containing mono-fluorinated thienothiophene gave the best solar cell performance. Perfluorination of the polymer backbone led to poor compatibility with PC(71)BM molecules, thus poor solar energy conversion efficiency. This is possibly due to the enhanced self-organization properties of the polymer chains and the fluorophobicity effect. Furthermore, it was found that perfluorination of the polymer backbone resulted in poor photochemical stability against singlet oxygen attack. Theoretical studies indicated that the internal polarization caused enhancement of the negative charge density on thienothiophene rings, which rendered them vulnerable to [2+4] cycloaddition reaction with singlet oxygen.  相似文献   
145.
146.
Conjugated microporous polymer (CMP)-based energy-storage materials were developed for pseudocapacitors. Nanoparticulate CMP (N-CMP) with an average diameter of 41±4 nm was prepared through kinetic growth control in the Sonogashira coupling of 1,3,5-triethynylbenzene with 1,4-diiodobenzene. The N-CMP is rich in a diphenylacetylene moiety in its chemical structure. Through the FeCl3-catalyzed oxidation of diphenylacetylene moieties, N-CMP with benzil moieties (N-CMP-BZ) was prepared and showed enhanced electrochemical performance as an electrode material of pseudocapacitors, compared with CMP, CMP-BZ, and N-CMP. In model studies, the benzil was redox active and showed two-electron reduction behavior. The excellent electrochemical performance of N-CMP-BZ is attributable to the enhanced utilization of functional sites by a nanosize effect and the additional redox contribution of benzil moieties.  相似文献   
147.
Crystals of 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium levulinate (4‐oxo­pentanoate) monohydrate, C3H7N6+·C5H7O3·H2O, are formed via self‐assembled hydrogen bonding by cocrystallization of mel­amine and levulinic acid. Two N—H⋯N hydrogen bonds and four N—H⋯O hydrogen bonds connect two melaminium entities such that each of two pairs of N—H⋯O bonds bridges two H atoms belonging to the amine groups of two different melaminium cations via the carbonyl O atom of one levulinate mol­ecule.  相似文献   
148.
The proximal axial ligand in heme iron enzymes plays an important role in tuning the reactivities of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions. The present study reports the effects of axial ligands in olefin epoxidation, aromatic hydroxylation, alcohol oxidation, and alkane hydroxylation, by [(tmp)+. FeIV(O)(p‐Y‐PyO)]+ ( 1 ‐Y) (tmp=meso‐tetramesitylporphyrin, p‐Y‐PyO=para‐substituted pyridine N‐oxides, and Y=OCH3, CH3, H, Cl). In all of the oxidation reactions, the reactivities of 1 ‐Y are found to follow the order 1 ‐OCH3 > 1 ‐CH3 > 1 ‐H > 1 ‐Cl; negative Hammett ρ values of ?1.4 to ?2.7 were obtained by plotting the reaction rates against the σp values of the substituents of p‐Y‐PyO. These results, as well as previous ones on the effect of anionic nucleophiles, show that iron(IV)‐oxo porphyrin π‐cation radicals bearing electron‐donating axial ligands are more reactive in oxo‐transfer and hydrogen‐atom abstraction reactions. These results are counterintuitive since iron(IV)‐oxo porphyrin π‐cation radicals are electrophilic species. Theoretical calculations of anionic and neutral ligands reproduced the counterintuitive experimental findings and elucidated the root cause of the axial ligand effects. Thus, in the case of anionic ligands, as the ligand becomes a better electron donor, it strengthens the FeO? H bond and thereby enhances its H‐abstraction activity. In addition, it weakens the Fe?O bond and encourages oxo‐transfer reactivity. Both are Bell–Evans–Polanyi effects, however, in a series of neutral ligands like p‐Y‐PyO, there is a relatively weak trend that appears to originate in two‐state reactivity (TSR). This combination of experiment and theory enabled us to elucidate the factors that control the reactivity patterns of iron(IV)‐oxo porphyrin π‐cation radicals in oxidation reactions and to resolve an enigmatic and fundamental problem.  相似文献   
149.
The so‐called colloidal template synthesis has been applied to the preparation of surface‐engineered nanoadsorbents. Colloidal microporous organic network nanotemplates (C‐MONs), which showed a high surface area (611 m2 g?1) and enhanced microporosity, were prepared through the networking of organic building blocks in the presence of poly(vinylpyrrolidone) (PVP). Owing to entrapment of the PVP in networks, the C‐MONs showed good colloidal dispersion in EtOH. MoS2 precursors were incorporated into the C‐MONs and heat treatment afforded core–shell‐type C@MoS2 nanoparticles with a diameter of 80 nm, a negative zeta potential (?39.5 mV), a high surface area (508 m2 g?1), and excellent adsorption performance towards cationic dyes (qmax=343.6 and 421.9 mg g?1 for methylene blue and rhodamine B, respectively).  相似文献   
150.
Choi HY  Park KS  Lee BH 《Optics letters》2008,33(8):812-814
We present an all-fiber interferometer fabricated with a single piece of an endless single-mode photonic crystal fiber (PCF) by an electric arc discharge. By forming a long period grating (LPG) at a point and collapsing the air holes at another point along the PCF, the simple but effective interferometer could be implemented. The LPG made a strong wavelength selective mode coupling between the core and cladding modes in the interesting wavelength range, while the air-hole collapse induced wavelength independent mode couplings. By cascading them, we could implement the all-fiber interferometer. As a potential application of the proposed all PCF interferometer, strain sensing is experimentally demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号