首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1355419篇
  免费   25804篇
  国内免费   7757篇
化学   680655篇
晶体学   20109篇
力学   74724篇
综合类   105篇
数学   241110篇
物理学   372277篇
  2021年   13519篇
  2020年   15919篇
  2019年   16063篇
  2016年   27593篇
  2015年   20656篇
  2014年   30447篇
  2013年   74412篇
  2012年   38560篇
  2011年   35294篇
  2010年   36526篇
  2009年   38821篇
  2008年   34654篇
  2007年   30265篇
  2006年   37454篇
  2005年   29030篇
  2004年   30643篇
  2003年   28850篇
  2002年   30032篇
  2001年   30396篇
  2000年   26026篇
  1999年   23053篇
  1998年   21241篇
  1997年   21188篇
  1996年   21158篇
  1995年   19218篇
  1994年   18658篇
  1993年   18212篇
  1992年   18530篇
  1991年   18730篇
  1990年   17976篇
  1989年   18007篇
  1988年   17542篇
  1987年   17523篇
  1986年   16480篇
  1985年   22851篇
  1984年   23975篇
  1983年   20091篇
  1982年   21715篇
  1981年   20959篇
  1980年   20277篇
  1979年   20604篇
  1978年   21826篇
  1977年   21494篇
  1976年   21200篇
  1975年   19954篇
  1974年   19571篇
  1973年   20076篇
  1972年   14551篇
  1968年   12409篇
  1967年   12768篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
42.
43.
44.
45.
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.  相似文献   
46.
47.
48.
49.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
50.
In this work, we have used the MuMax3 software to simulate devices consisting of a ferromagnetic thin film placed over a heavy metal thin film. The devices are two interconnected partial-disks where a Néel domain wall is formed in the disks junction. In our simulations we investigate devices with disk radius r=50 nm and different distance d between the disks centers (from d=12 nm to d=2R=100 nm). By applying strong sinusoidal external magnetic fields, we find a mechanism able to create, annihilate and even manipulate a skyrmion in each side of the device. This mechanism is discussed in terms of interactions between skyrmion and domain wall. The Néel domain wall formed in the center of the device interacts with the Néel skyrmion, leading to a process of transporting a skyrmion from one disk to the other periodically. Our results have relevance for potential applications in spintronics such as logical devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号