首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   11篇
  国内免费   1篇
化学   881篇
晶体学   16篇
力学   11篇
数学   291篇
物理学   201篇
  2021年   17篇
  2020年   6篇
  2019年   12篇
  2018年   21篇
  2017年   24篇
  2016年   26篇
  2015年   29篇
  2014年   26篇
  2013年   98篇
  2012年   46篇
  2011年   66篇
  2010年   34篇
  2009年   35篇
  2008年   51篇
  2007年   45篇
  2006年   57篇
  2005年   44篇
  2004年   49篇
  2003年   48篇
  2002年   45篇
  2001年   24篇
  2000年   27篇
  1999年   27篇
  1998年   29篇
  1997年   16篇
  1996年   23篇
  1995年   11篇
  1994年   19篇
  1993年   17篇
  1992年   15篇
  1991年   24篇
  1990年   22篇
  1989年   15篇
  1988年   23篇
  1987年   18篇
  1986年   15篇
  1985年   32篇
  1984年   32篇
  1983年   13篇
  1982年   20篇
  1981年   23篇
  1980年   13篇
  1979年   17篇
  1978年   12篇
  1977年   12篇
  1976年   16篇
  1975年   17篇
  1974年   15篇
  1973年   18篇
  1972年   8篇
排序方式: 共有1400条查询结果,搜索用时 11 毫秒
91.
The ultraviolet A (UVA) radiation component of sunlight (320-400 nm) has been shown to be a source of oxidative stress to cells via generation of reactive oxygen species. We report here some consequences of the UVA irradiation on cell membranes detected by electron paramagnetic resonance (EPR) spectroscopy. Paramagnetic nitroxide derivatives of stearic acid bearing the monitoring group at different depths in the hydrocarbon chain were incorporated into human fibroblasts membranes to analyze two main characteristics: kinetics of the nitroxide reduction and membrane fluidity. These two characteristics were compared for control and UVA-irradiated (0-250 kJ/m(2)) cells. The term relative redox capacity (RRC) was introduced to characterize and to compare free radical reduction measured by EPR with some well-known viability/clonogenicity tests. Our results showed that UVA-irradiation produces a more rigid membrane structure, especially at higher doses. Furthermore, we found that trends agree in survival measured by neutral red (NR), trypan blue (TB), and clonogenic efficiency compared with RRC values measured by EPR for low and medium exposure doses. Above 100 kJ/m(2), differences between these tests were observed. Antioxidant effect was modeled by alpha-tocopherol-acetate treatment of the cells before UVA irradiation. While NR, TB and clonogenicity tests showed protection at the highest UVA doses (>100 kJ/m(2)), results obtained with EPR measurements, both membrane fluidity and kinetics, or using MTT test did not exhibit this protective effect.  相似文献   
92.
The sidechain conformational potential energy hypersurfaces (PEHS) for the γL, βL, αL, and αD backbone conformations of N-acetyl- -aspartate-N′-methylamide were generated. Of the 81 possible conformers initially expected for the aspartate residue, only seven were found after geometric optimizations at the B3LYP/6-31G(d) level of theory. No stable conformers could be located in the δL, L, γD, δD, and D backbone conformations. The ‘adiabatic’ deprotonation energies for the endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide were calculated by comparing their optimized relative energies against those found for the seven stable conformers of N-acetyl- -aspartate-N′-methylamide. Sidechain conformational PEHSs were also generated for the estimation of ‘vertical’ deprotonation energies for both endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide. All backbone–sidechain (N–HO–C) and backbone–backbone (N–HO=C) hydrogen bond interactions were analyzed. A total of two backbone–backbone and four backbone–sidechain interactions were found for N-acetyl- -aspartate-N′-methylamide. The deprotonated sidechain of N-acetyl- -aspartate-N′-methylamide may allow the aspartyl residue to form strong hydrogen bond interactions (since it is negatively charged) which may be significant in such processes as protein–ligand recognition and ligand binding. As a primary example, the molecular geometry of the aspartyl residue may be important in peptide folding, such as that in the RGD tripeptide.  相似文献   
93.
Summary Gas chromatographic chiral separation of several chiral 2-and 3-alkanols and diols was studied both in their free hydroxyl and in their trimethylsilyl ether forms. First, the derivatization procedure was verified through the identification of the trimethylsilyl ethers formed on the basis of their mass spectra and optimized to obtain quantitative reaction. The optimized procedure was applied to the trimethylsilylation of racemic mixtures of various hydroxyl compounds. The silylation was found to be highly effective in the improvement of the separation of the individual enantiomers. The major advantages of the derivatization process can be summarized as: (i) excellent baseline separation of the enantiomers of the silyl ethers was achieved in contrast to the parent OH-containing compounds, (ii) the sensitivity of detection highly increased, (iii) the separations do not show any significant concentration dependence and finally (iv) the analysis time needed decreased significantly. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   
94.
95.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
96.
The flame retardant mechanism of a newly synthesized phosphorus-containing reactive amine, which can be used both as crosslinking agent in epoxy resins and as flame retardant, was investigated. The mode of action and degradation pathway were investigated by in situ analysis of the gases evolved during the degradation by thermogravimetric measurements coupled online with infrared (TG-EGA-FTIR) and mass spectroscopy (TG/DTA-EGA-MS) and by solid residue analysis by infrared (ATR) spectroscopic methods and X-ray photoelectron spectroscopy (XPS). It was observed that the main difference in the degradation of the reference and the flame retardant system is that the degradation of the latter begins at lower temperature mainly with the emission of degradation products of the phosphorus amine, which act as flame retardants in the gas phase slowing down the further degradation steps. At the high temperature degradation stage the solid phase effect of the phosphorus prevails: the formation of phosphorocarbonaceous intumescent char results in a mass residue of 23.4%. The ratio of phosphorus acting in gas phase and solid phase, respectively, was determined on the basis of thermogravimetric and XPS measurements.  相似文献   
97.
Molecular dynamics (MD) simulations in a membrane-embedded environment were carried out on the homology model of the human histamine H4 receptor (hH4R) alone and in complex with its endogenous activator histamine and with the first reported selective hH4R antagonist JNJ7777120. During the simulation of the histamine-hH4R complex, considerable changes occurred in the hH4R structure as well as in the interaction pattern of histamine at the binding site. These changes are in agreement with experimental data published on GPCR activation. In particular, the intracellular side of TM helix VI moved significantly away from TM helices III and VII. Moreover, histamine formed an interaction with Asn147 (4.57) that was previously proved to be important in hH4R activation. Results of the MD simulations of the native hH4R and the JNJ7777120-hH4R complex suggest that these models represent an inactive conformation of hH4R. MD simulation in the presence of JNJ7777120 resulted in the movement of the intracellular side of TM helix VI in the direction of TM helix III. Snapshots of the simulations may serve as functionally relevant models in the development of novel hH4R ligands in the future.  相似文献   
98.
Spin-orbit coupling (SOC) induced intersystem crossing (ISC) has long been believed to play a crucial role in determining the product distributions in the O(3P) + C2H4 reaction. In this paper, we present the first nonadiabatic dynamics study of the title reaction at two center-of-mass collision energies: 0.56 eV, which is barely above the H-atom abstraction barrier on the triplet surface, and 3.0 eV, which is in the hyperthermal regime. The calculations were performed using a quasiclassical trajectory surface hopping (TSH) method with the potential energy surface generated on the fly at the unrestricted B3LYP/6-31G(d,p) level of theory. To simplify our calculations, nonadiabatic transitions were only considered when the singlet surface intersects the triplet surface. At the crossing points, Landau-Zener transition probabilities were computed assuming a fixed spin-orbit coupling parameter, which was taken to be 70 cm-1 in most calculations. Comparison with a recent crossed molecular beam experiment at 0.56 eV collision energy shows qualitative agreement as to the primary product branching ratios, with the CH3 + CHO and H + CH2CHO channels accounting for over 70% of total product formation. However, our direct dynamics TSH calculations overestimate ISC so that the total triplet/singlet ratio is 25:75, compared to the observed 43:57. Smaller values of SOC reduce ISC, resulting in better agreement with the experimental product relative yields; we demonstrate that these smaller SOC values are close to being consistent with estimates based on CASSCF calculations. As the collision energy increases, ISC becomes much less important and at 3.0 eV, the triplet to singlet branching ratio is 71:29. As a result, the triplet products CH2 + CH2O, H + CH2CHO and OH + C2H3 dominate over the singlet products CH3 + CHO, H2 + CH2CO, etc.  相似文献   
99.
New zinc acetate based complex compounds (of general formula Zn(CH3COO)2·1?2L·nH2O) containing one or two molecules of urea, thiourea, coffeine and phenazone were prepared namely: Zn(CH3COO)2·2.5H2O, Zn(CH3COO)2·2u·0.5H2O, Zn(CH3COO)2·tu·0.5H2O, Zn(CH3COO)2·2tu, Zn(CH3COO)2·cof·2.5H2O, Zn(CH3COO)2·2cof·3.5H2O, Zn(CH3COO)2·2phen·1.5H2O. The compounds were characterized by IR spectroscopy, chemical analysis and thermal analysis. Thermal analysis showed that no changes in crystallographic modifications of the compounds take place during (heating in nitrogen before) the thermal decompositions. The temperature interval of the stability of the prepared compounds were determined. It was found that the thermal decomposition of hydrated compounds starts by the release of water molecules. During the thermal decomposition of anhydrous compounds in nitrogen the release of organic ligands take place followed by the decomposition of the acetate anion. Zinc oxide and metallic zinc were found as final products of the thermal decomposition of the zinc acetate based complex compounds studied. Carbon dioxide and acetone were detected in the gaseous products of the decomposition of the compounds if ZnO is formed. Carbon monoxide and acetaldehyde were detected in the gaseous products of the decomposition, if metallic Zn is formed. It is supposed that ZnO and Zn resulting from Zn acetate complex compounds here studied, possess different degree of structural disorder. Annealing takes place by further heating above 600°C.  相似文献   
100.
The molecular structure and benzene ring distortions of ethynylbenzene have been investigated by gas-phase electron diffraction and ab initio MO calculations at the HF/6-31G* and 6-3G** levels. Least-squares refinement of a model withC 2v, symmetry, with constraints from the MO calculations, yielded the following important bond distances and angles:r g(C i -C o )=1.407±0.003 Å,r g(C o -C m )=1.397±0.003 Å,r g(C m -C p )=1.400±0.003 Å,r g(Cr i -CCH)=1.436 ±0.004 Å,r g(C=C)=1.205±0.005 Å, C o -C i -C o =119.8±0.4°. The deformation of the benzene ring of ethynylbenzene given by the MO calculations, including o-Ci-Co=119.4°, is insensitive to the basis set used and agrees with that obtained by low-temperature X-ray crystallography for the phenylethynyl fragment, C6H5-CC-, in two different crystal environments. The partial substitution structure of ethynylbenzene from microwave spectroscopy is shown to be inaccurate in the ipso region of the benzene ring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号