首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   18篇
化学   367篇
晶体学   15篇
力学   7篇
数学   23篇
物理学   80篇
  2023年   9篇
  2022年   19篇
  2021年   12篇
  2020年   13篇
  2019年   16篇
  2018年   19篇
  2017年   14篇
  2016年   19篇
  2015年   14篇
  2014年   23篇
  2013年   43篇
  2012年   34篇
  2011年   38篇
  2010年   22篇
  2009年   16篇
  2008年   27篇
  2007年   14篇
  2006年   12篇
  2005年   16篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1997年   4篇
  1996年   4篇
  1994年   4篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   9篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1963年   1篇
排序方式: 共有492条查询结果,搜索用时 31 毫秒
71.
Novel stannoxane type dinuclear tin complex C16H13N4O2Sn2Cl7 (1) and its modulated macrocyclic complexes [C24H36N10O3Sn2CuCl7] ClO4 (2) and [C24H34N10O2Sn2NiCl7] ClO4 (3) were synthesized and characterized by elemental analysis and various spectroscopic techniques (IR, 1H, 13C, 119Sn NMR, ESI-MS, EPR and UV-Vis). 119Sn NMR shows the presence of two tin metal centers in different environment. The proposed pseudo-octahedral geometry of copper in complex 2 and square pyramidal geometry of nickel in complex 3 were established by the analysis of spectroscopic data. Absorption and fluorescence spectral studies and viscosity measurements have been carried out to assess the comparative binding of dinuclear stannoxane complex 1 and its modulated copper complex 2 with calf thymus DNA. The intrinsic binding constants Kb of the complex 1 and 2 were determined as 4.4 × 104 M−1 and 7.5 × 104 M−1, respectively. Cyclic voltammetric studies have also been employed to ascertain the binding of complex 2 with CTDNA. The results suggest that the complex 2 binds to CTDNA twice in the order of magnitude compared to complex 1. Interaction studies of complex 2 with guanosine 5′-monophosphate further confirm the binding via N7 position of guanine and phosphate moiety.  相似文献   
72.
The structural and electronic properties of berberine and berberrubine have been studied extensively using density functional theory (DFT) employing B3LYP exchange correlation. The geometries of these molecules have been fully optimized at the B3LYP/6-311G** level. The chemical shift of 1H and 13C resonances in NMR spectra of these molecules have been calculated using the gauge invariant atomic model (GIAO) method as implemented in Gaussian 98. One- and two-dimensional HSQC (1H-13C), HMBC (1H-13C) and ROESY (1H-1H) spectra were recorded at 500 MHz for the berberine molecule in D(2)O solution. All proton and carbon resonances were unambiguously assigned, and inter-proton distances obtained from ten observed NOE contacts. A restrained molecular dynamics (RMD) approach was used to get the optimized solution structure of berberine. The structure of berberine and berberrubine molecules was also obtained using the ROESY data available in literature. Comparison of the calculated NMR chemical shifts with the experimental values revealed that DFT methods produce very good results for both proton and carbon chemical shifts. The importance of the basis sets to the calculated NMR parameters is discussed. It has been found that calculated structure and chemical shifts in the gas phase predicted with B3LYP/6-311G** are in very good agreement with the present experimental data and the measured values reported earlier.  相似文献   
73.
The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.  相似文献   
74.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   
75.
Replacement reactions of toluene-3,4-dithiolatoantimony(III) chloride with oxygen and/or sulphur donor ligands like benzoic acid, thiobenzoic acid, thioacetic acid, phenol, thiophenol, sodium salicylate and thio glycolic acid in 1:1 molar ratio as well as disodium oxalate in 2:1 molar ratio in refluxing anhydrous benzene yielded toluene-3,4-dithiolatoantimony(III) mono oxo and/or thio carboxylic or phenolic derivatives of the general formula {R = OOCC6H5, SOCC6H5, SOCCH3, OC6H5, SC6H5, OOCC6H4(OH) and SCH2COOH} and

These newly synthesized derivatives are yellow and brown solids/liquids and are soluble in common organic solvents like benzene, chloroform, dichloromethane, etc. These derivatives have been characterized by melting point determination, molecular weight determination, elemental analysis (C, H, S and Sb), spectral {UV, IR and NMR (1H and 13C)} and thermal (TGA, DTA and DSC) studies.  相似文献   
76.
We study the uptake of amitriptyline, which is a common cause of overdose-related fatalities, in aqueous solutions by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes and liposomes composed of a mixture of DMPC and 1,2-dioleoyl-sn-glycero-3-[phospho-rac(1-glycerol)] (DOPG) lipids. The effect of drug concentration, liposomal charge, pH, salt, and protein presence on the drug uptake is investigated using two different methodologies, a precipitation and a centrifugation method. Furthermore, the time scale of the drug uptake is studied through qualitative observations at high pH and through conductivity measurements at neutral pH and found to be <5 s. The results of the quantitative studies show that the fractional drug uptake decreases with increasing drug concentration, and for a given concentration it increases with the pH and decreases in the presence of salt. We find that a larger amount of drug is sequestered by negatively charged liposomes (those containing DOPG) than liposomes with no net charge (DMPC). We speculate that the mechanism of drug uptake is due to both electrostatic interactions as well as hydrophobic effects. The fractional uptake by DMPC:DOPG in a 70:30 ratio is as high as 95% in water and about 90% in physiological buffer. The fractional uptake is also measured in presence of 2% (w/w) bovine serum albumin (BSA), which is approximately the protein concentration in the intercellular fluid. In presence of protein the fractional uptakes by 70:30 DMPC:DOPG liposomes and 50:50 DMPC:DOPG liposomes are 82 and 90%, respectively, at 125 muM drug amitriptyline. In the absence of liposomes, 67% of the drug is taken up by the protein in a 2% (w/w) BSA, 125 muM amitriptyline solution. Thus, addition of 50:50 DMPC:DOPG liposomes reduces the free drug concentration by a factor of about 3.5, making them attractive candidates for drug detoxification.  相似文献   
77.
It is known that the breakup times for thin liquid films on solid surfaces can be substantially smaller if the surface is heterogeneous, either chemically or physically. In this paper we explore issues related to the effect of the shape of the physical and chemical heterogeneities on the breakup time and the thinning behavior. We consider two shapes, sinusoidal and exponential, for both physical and chemical gradients and compare the breakup times for these two different forms of gradients. Furthermore, the wavelength of the sinusoidal gradients and the length scale of the exponential gradients are varied and the effects of these on the breakup times and the film evolution are determined. For the sinusoidal gradients, we also obtain analytical results for shape evolution that are valid at short times and for small amplitude perturbation of the physical/chemical heterogeneities. The fastest growing modes are determined for spinodal breakup and also for both shapes (sinusoidal and exponential) of physical and chemical heterogeneities. The breakup times for the fastest growing modes from the linear and the nonlinear studies are compared for spinodal breakup and these results are also compared with those for both chemical and physical heterogeneities, of both sinusoidal and exponential shapes. Results show that the presence of heterogeneities, in general, accelerates the breakup of the film. In the linear regime, the growth rates are the same for the chemical and physical heterogeneities and spinodal breakup, and the effect of the heterogeneities is manifested as increased amplitude of initial perturbation. The effect of the chemical and physical heterogeneities dominate the film dynamics at early times, becoming less important at later times. The growth rates and equivalently the breakup times for the films on heterogeneous surfaces depend on the length scale over which physical/chemical gradients occur, and as the length scale approaches zero, which implies that the gradients become very steep, the effect of the heterogeneities on the breakup times becomes small.  相似文献   
78.
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams,which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams.  相似文献   
79.
Chauhan  Jagdish Kumar  Kumar  Manindra  Yadav  Madhavi  Tiwari  Tuhina  Srivastava  Neelam 《Ionics》2017,23(10):2943-2949

Polymer electrolyte has seen tremendous growth after works of Fenton & Armand, and energy devices are being produced at commercial level. Today’s social lifestyle needs miniaturized energy devices at every step of life; consequently, they add up to chemical garbage of the world. The sustainable development in the field needs eco-friendly energy devices. Hence, starch (being at low cost, abundant in nature and eco-friendly) has received great scientific attention. In recent past, many attempts have been made to modify the various starches to get fast ion-conducting materials. In our laboratory, also, wheat, potato, rice and arrowroot starches have been modified with different sodium salts, and in each case, considerably high-conducting (>10−3 S/cm) films have been found. In present case, also, a high-conducting transparent film (10−2 S/cm) is obtained with corn starch and NaClO4 salt after being crosslinked with glutaraldehyde (GA). Bode plots (both phase and magnitude), capacitive-response plot, capacitive-frequency plots and linear sweep voltammetry curves are analysed to explain the possibility of using the prepared electrolyte in capacitive device. The larger electrochemical stability window (ESW) ~ 2.4 V and smaller ion relaxation time ~ 65 μs make it a potential candidate for device fabrication. The equivalent series resistance is ~6.252 Ω for 0.8-mm-thick sample.

  相似文献   
80.
Essential oils derived from six different phenophases, namely early vegetative stage, late vegetative stage, early flowering stage, full flowering stage (FFS), late flowering stage and seed shattering stage of Origanum vulgare L. grown in Kumaon region of Uttarakhand, India were investigated by GC and GC-MS. A total of 38 constituents, representing 97.4-99.7% of the total oil composition, were identified. Major components of oils were thymol (40.9-63.4%), p-cymene, (5.1-25.9%), γ-terpinene (1.4-20.1%), bicyclogermacrene (0.2-6.1%), terpinen-4-ol (3.5-5.9%), α-pinene (1.6-3.1%), 1-octen-3-ol (1.4-2.7%), α-terpinene (1.0-2.2%), carvacrol (<0.1-2.1%), β-caryophyllene (0.5-2.0%) and β-myrcene (1.2-1.9%). Thymol, terpinen-4-ol, 3-octanol, α-pinene, β-pinene, 1,8-cineole, α-cubebene and (E)-β-ocimene were observed to be higher during FFS. The study showed that plant stage had a significant effect on the essential oil content and composition of O. vulgare grown in the hilly tracks of Northern India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号