首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
化学   96篇
晶体学   6篇
力学   1篇
数学   8篇
物理学   13篇
  2022年   23篇
  2021年   10篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1957年   1篇
排序方式: 共有124条查询结果,搜索用时 0 毫秒
21.
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   
22.
Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines.  相似文献   
23.
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447  相似文献   
24.
25.
In this study, well-defined, high density poly(2-(dimethylamino)ethyl methacrylate) [poly(DMAEMA)] brushes were fabricated by the combination of the self-assembly of a monolayer of RAFT agent and surface-mediated RAFT polymerization. The whole fabrication process of the poly(DMAEMA) was followed by water contact angles, grazing angle-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Kinetic studies revealed a linear increase in poly(DMAEMA) film thickness with polymerization time, indicating that the chain growth from the surface was a controlled process. Characterization of the poly(DMAEMA) brushes, such as molecular weight and thickness determination, were measured by gel permeation chromatography, and ellipsometry, and the grafting density was estimated. The pH response of the poly(DMAEMA) brushes was further investigated and the results verified the “brush-like” to “mushroom-like” transition of the poly(DMAEMA) chains due to the reversible protonation/deprotonation upon changing the solution pH.  相似文献   
26.
Novel complexes of 6?methylpyridine?2?carboxylic acid and thiocyanate {[Cu(NCS)(6-mpa)2], (1); [Cd(NCS)(6-mpa)]n, (2); [Cr(NCS)(6-mpa)2·H2O], (3)} were synthesized, and their structures were characterized by XRD analysis, FT–IR and UV–Vis spectroscopic techniques. The inhibitory activities of the synthesized complexes (1–3) on α-glucosidase were determined by using genistein reference compound. Furthermore, the optimized geometry and vibrational harmonic frequencies for the complexes 1–3 were obtained by DFT/HSEh1PBE/6–311G(d,p)/LanL2DZ level. Electronic spectral properties were examined by using TD-DFT/HSEh1PBE/6–311G(d,p)/LanL2DZ level with CPCM model. Additionally, major contributions to the electronic transitions were determined via Swizard program. The refractive index, linear optical and non?nonlinear optical parameters of the complexes 1–3 were investigated at HSEh1PBE/6–311G(d,p) level. The docking studies of the complexes 1–3 to the binding site of the target protein (the template structure S. cerevisiae isomaltase are fulfilled. Lastly, natural bond orbital analysis was used to investigate inter- and intra-molecular bonding and interaction among bonds.  相似文献   
27.
The crystal structure of the ζ2‐phase Al3Cu4‐δ was determined by means of X‐ray powder diffraction: a = 409.72(1) pm, b = 703.13(2) pm, c = 997.93(3) pm, space group Imm2, Pearson symbol oI24‐3.5, RI = 0.0696. ζ2‐Al3Cu4‐δ forms a distinctive a × √3a × 2c superstructure of a metal deficient Ni2In‐type‐related structure. The phase is meta‐stable at ambient temperature. Between 400 °C and 450 °C it decomposes into ζ1‐Al3Cu4 and η2‐AlCu. Entropic contributions to the stability of ζ2‐Al3Cu4‐δ are reflected in three statistically or partially occupied sites.  相似文献   
28.
29.
Pollen extract represents an innovative approach for the management of the clinical symptoms related to prostatitis and pelvic inflammatory disease (PID). In this context, the aims of the present work were to analyze the phenolic composition of a hydroalcoholic extract of PollenAid Plus soft gel capsules, and to evaluate the extract’s cytotoxic effects, in human prostate cancer PC3 cells and human ovary cancer OVCAR-3 cells. Additionally, protective effects were investigated in isolated prostate and ovary specimens exposed to lipopolysaccharide (LPS). The phytochemical investigation identified catechin, chlorogenic acid, gentisic acid, and 3-hydroxytyrosol as the prominent phenolics. The extract did not exert a relevant cytotoxic effect on PC3 and OVCAR-3 cells. However, the extract showed a dose-dependent inhibition of pro-inflammatory IL-6 and TNF-α gene expression in prostate and ovary specimens, and the extract was effective in preventing the LPS-induced upregulation of CAT and SOD gene expression, which are deeply involved in tissue antioxidant defense systems. Finally, a docking approach suggested the capability of catechin and chlorogenic acid to interact with the TRPV1 receptor, playing a master role in prostate inflammation. Overall, the present findings demonstrated anti-inflammatory and antioxidant effects of this formulation; thus, suggesting its capability in the management of the clinical symptoms related to prostatitis and PID.  相似文献   
30.
A new triterpene glycoside, silviridoside, was isolated from the aerial parts of Silene viridiflora (Caryophyllaceae) using different chromatographic techniques. The structure of silviridoside was comprehensively elucidated as 3-O-β-D-galacturonopyranosyl-quillaic acid 28-O-β-D-glucopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-fucopyranosyl ester by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Silviridoside showed promising antioxidant activity in different antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) (2.32 mg TE/g), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (1.24 mg TE/g), cupric-reducing antioxidant capacity (CUPRAC) (9.59 mg TE/g), ferric-reducing antioxidant power (FRAP) (5.13 mg TE/g), phosphomolybdenum (PHD) (0.28 mmol TE/g), and metal-chelating (MCA) (6.62 mg EDTA/g) assays. It exhibited a good inhibitory potential on acetylcholinesterase (AChE) (2.52 mg GALAE/g), butyrylcholinesterase (BChE) (7.16 mg GALAE/g), α-amylase (0.19 mmol ACAE/g), α-glucosidase (1.21 mmol ACAE/g), and tyrosinase (38.83 mg KAE/g). An in silico evaluation of the pharmacodynamic, pharmacokinetic, and toxicity properties of silviridoside showed that the new compound exhibited reasonable pharmacodynamic and pharmacokinetic properties without any mutagenic effect, but slight toxicity. Thus, it could be concluded that silviridoside could act as a promising lead drug for pharmaceutical and nutraceutical developments to combat oxidative stress and various disorders, but a future optimization is necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号