首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
化学   61篇
力学   1篇
数学   2篇
物理学   10篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有74条查询结果,搜索用时 46 毫秒
61.
Guirgis  Gamil A.  Pan  Chunhua  Shen  Shiyu  Durig  James R. 《Structural chemistry》2001,12(6):445-458
The Raman spectra (3200–30 cm–1) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl chloride, ClCH2SiH2Cl, have been recorded. Variable temperature (–105––150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference is 177 ± 35 cm–1 (2.12 ± 0.42 kJ/mol), with the more stable form being the trans conformer, which is consistent with the prediction from ab initio calculations at both the Hartree–Fock level and with electron correlation by the perturbation method to second order. It is estimated that 56% of the sample is in the trans form at ambient temperature. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   
62.
The microwave spectrum of cyclobutylisocyanate, c-C4H7NCO, has been investigated from 21,000 to 11,000 MHz and 11 transitions for the more stable equatorial-trans conformer were assigned. The rotational constants of the ground vibrational state have been determined and the molecule has been shown to be a near symmetric prolate rotor (К = ?0.99). The B and C rotational constants have been confidently determined to be B = 1508.68(3) and C = 1476.55(2) MHz, respectively, whereas the value for the A rotational constant of 6,891(302) MHz had a large uncertainty. Variable temperature (?100 to ?55 °C) studies of the infrared spectra (3,500–400 cm?1) of cyclobutylisocyanate dissolved in liquid xenon as well as the infrared spectra of the gas and solid have been recorded. In addition, the Raman spectra (3,600–100 cm?1) of the liquid have been investigated. These spectral data indicated the present of three conformers in the fluid states which are the equatorial-trans, equatorial-gauche, and axial-trans forms. The second part of the conformational name refers to the relative position of the NCO moiety relative to the alpha hydrogen. By utilizing four conformer pairs, an enthalpy difference of 131 ± 13 cm?1 (1.57 ± 0.16 kJ/mol) was obtained with the equatorial-trans conformer the more stable form, which is in good agreement with the ab initio predicted value of 137 ± 36 cm?1 (1.64 ± 0.43 kJ/mol). To aid in the vibrational assignment, ab initio and DFT calculations have been carried out by using a variety of basis sets up to 6-311G(3df,3pd).  相似文献   
63.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   
64.
Infrared spectra of gaseous and solid 2-cyclopropylpropene (2-CPP, c-C3H5C (CH3)CH2) have been recorded from 3500 to 40 cm-1, and Raman spectra (3200-150 cm-1) of the liquid as well as mid-infrared spectra of 2-CPP in liquid krypton solution (from -105 to -150 degrees C) were also obtained. Ab initio calculations, with basis sets up to 6-311+G(2df, 2pd), were carried out for this molecule, using the restricted Hartree-Fock (RHF) approach, with full electron correlation by the perturbation method to second order (MP2(full)) and density functional theory (DFT) by the B3LYP method. The combination of the experimental and computational results (particularly with the higher basis sets) unequivocally identifies the more stable conformer of 2-CPP as the trans form, with the gauche rotamer higher in energy, but also stable. The cis structure of this compound is not observed experimentally, and is predicted by the computational approaches to be a transition state. By studying the temperature variation of two well-resolved sets of conformational doublets of 2-CPP dissolved in liquid krypton, an average enthalpy difference between conformers of 182+/-18 cm-1 (2.18+/-0.22 kJ mol-1) has been determined, with the trans conformation lower in energy in the fluid states, and the sole conformer present in the polycrystalline solid phase. This enthalpy difference corresponds to an ambient temperature conformational equilibrium in the fluid phases of 2-cyclopropylpropene containing approximately 55+/-2% of the more stable trans rotameric form. A complete vibrational assignment for the trans conformer of 2-CPP is given, and many of the bands of the gauche rotamer have also been assigned. Structural parameters, dipole moments, and rotational constants for this molecule have been calculated at the MP2(full)/6-311+G(d,p) level, and these results--as well as the results from the experimental studies--are compared to similar quantities in related compounds.  相似文献   
65.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   
66.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   
67.
The far infrared spectrum (375 to 30 cm–1) of gaseous 2-chloro-3-fluoropropene, CH2=C(CH2F)CI, has been recorded at a resolution of 0.10 cm–1. The fundamental asymmetric torsional mode is observed at 117.5 cm–1 with ten excited states falling to low frequency for thes-cis (fluorine atom eclipsing the double bond) conformer. For the higher energy gauche conformer, the asymmetric torsion is estimated to be at 94 cm–1. From these data the asymmetric torsional potential function has been calculated. The potential function coefficients are calculated to be in cm–1):V 1=803±21,V 2=–94±21,V 3= 1025±10,V 4=95±10, andV 6=2±1, with an enthalpy difference between the more stables-cis and gauche conformera of 550±100 cm–1 (1.57±0.29 kcal/mol). This function gives values of 1227±50cm–1(3.51±0.14kcal/mol), 1266±200 cm–1 (3.62±0.57 kcal/mol), and 665±100 cm–1 (1.90±0.29 kcal/mol), for thes-cis to gauche, gauche to gauche, and gauche tos-cis barriers, respectively. From the relative intensities of the Raman lines of the gas at 652 cm–1 (gauche) and 731 cm–1 (s-cis) as a function temperature, the enthalpy difference is found to be 565±96 cm–1 (1.62±0.27 kcal/mol). However, the more polar gauche conformer remains in the crystalline solid. The Raman spectrum of the gas has been recorded from 3500 to 70 cm–1 and, utilizing these data and the previously reported infrared data, a complete vibrational analysis is proposed for both conformers. The conformational stability, barriers to internal rotation, fundamental vibrational frequencies, and structural parameters that have been determined experimentally are compared to those obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21 G* and 6–31G* basis sets and to the corresponding quantities for some similar molecules.  相似文献   
68.
Raman spectra of cyclopropylmethyl dichlorosilane (c-C3H5)SiCl2CH3 as a liquid were recorded at 293 K and polarization data were obtained. Additional Raman spectra were recorded at various temperatures between 293 and 163 K, and intensity changes of certain bands with temperature were detected. No crystallization was ever obtained in the Raman cryostat in spite of extensive annealing. The infrared spectra have been studied as a vapour, as an amorphous solid at 78 K and as a liquid in the range 600-100 cm−1. No infrared bands present in the vapour or liquid seemed to vanish upon cooling, and the sample never formed crystals on the CsI window of an infrared cryostat.The compound exists a priori in two conformers, syn and gauche, and the experimental results suggest an equilibrium in which the gauche conformer has 1.64 kJ mol−1 lower enthalpy than syn in the liquid, leading to 20% syn at ambient temperature. Most of the syn bands were situated close to the corresponding gauche bands and it was difficult to obtain reliable ΔH values.B3LYP calculations with various basis sets and the CBS-QB3 and G2 and G3 models were employed, yielding the conformational enthalpy difference ΔH (syn-gauche) between 2.6 and 3.4 kJ mol−1. Infrared and Raman intensities, polarization ratios and vibrational frequencies for the syn and gauche conformers were calculated. Instead of scaling the calculated wavenumbers in the harmonic approximation, calculations from B3LYP/cc-pVTZ were derived in the anharmonic approximation. In most cases these values were in good agreement with the experimental results for 38 observed modes of the gauche and 8 modes of the syn conformer with a deviation of ca. 1%.  相似文献   
69.
The development of rapid detection assays for malaria diagnostics is an area of intensive research, as the traditional microscopic analysis of blood smears is cumbersome and requires skilled personnel. Here, we describe a simple and sensitive immunoassay that successfully detects malaria antigens in infected blood cultures. This homogeneous assay is based on the fluorescence quenching of cyanine 3B (Cy3B)-labeled recombinant Plasmodium falciparum heat shock protein 70 (PfHsp70) upon binding to gold nanoparticles (AuNPs) functionalized with an anti-Hsp70 monoclonal antibody. Upon competition with the free antigen, the Cy3B-labeled recombinant PfHsp70 is released to solution resulting in an increase of fluorescence intensity. Two types of AuNP-antibody conjugates were used as probes, one obtained by electrostatic adsorption of the antibody on AuNPs surface and the other by covalent bonding using protein cross-linking agents. In comparison with cross-linked antibodies, electrostatic adsorption of the antibodies to the AuNPs surfaces generated conjugates with increased activity and linearity of response, within a range of antigen concentration from 8.2 to 23.8 μg.mL(-1). The estimated LOD for the assay is 2.4 μg.mL(-1) and the LOQ is 7.3 μg.mL(-1). The fluorescence immunoassay was successfully applied to the detection of antigen in malaria-infected human blood cultures at a 3% parasitemia level, and is assumed to detect parasite densities as low as 1,000 parasites.μL(-1).  相似文献   
70.
The Raman spectra (3500–50 cm−1) of the liquid and solid methylcyclohexane and the infrared spectra of the gas and solid methylcyclohexane have been recorded. The Raman band at 754 cm−1 in the liquid has been confidently assigned to the less stable axial conformer and its intensity was recorded as a function of temperature from 25 to −95 °C. By the utilization of 15 different temperatures, the enthalpy difference between the more stable chair‐equatorial conformer and the chair‐axial form was determined to be 712 ± 71 cm−1 (8.50 ± 0.84 kJ/mol). The ab initio predicted value of 710 cm−1 (8.50 kJ/mol) from the MP2(full)/6‐311G(2d,2p) calculations with and without diffuse functions is in excellent agreement. The harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational wavenumbers have been obtained for both conformers from MP2(full)/6‐31G(d) ab initio calculations. With two scaling factors of 0.88 for the C‐H stretches and 0.9 for the remaining ones, the fundamental wavenumbers have been predicted and along with the depolarization values and infrared band contours (B‐type for A″ modes) a complete vibrational assignment has been made for the chair‐equatorial conformer. Predicted r0 structural parameters have been provided from adjusted parameters from ab initio MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some similar molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号