首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1760篇
  免费   99篇
  国内免费   4篇
化学   1293篇
晶体学   4篇
力学   65篇
数学   179篇
物理学   322篇
  2023年   18篇
  2022年   34篇
  2021年   45篇
  2020年   70篇
  2019年   53篇
  2018年   30篇
  2017年   16篇
  2016年   73篇
  2015年   72篇
  2014年   85篇
  2013年   94篇
  2012年   144篇
  2011年   182篇
  2010年   86篇
  2009年   82篇
  2008年   112篇
  2007年   137篇
  2006年   104篇
  2005年   86篇
  2004年   64篇
  2003年   51篇
  2002年   37篇
  2001年   21篇
  2000年   20篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   13篇
  1995年   6篇
  1994年   11篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1989年   4篇
  1988年   3篇
  1985年   5篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1970年   2篇
  1917年   2篇
  1910年   2篇
  1895年   2篇
排序方式: 共有1863条查询结果,搜索用时 0 毫秒
81.
4‐Nitrophenyl layers were grafted on gold and glassy carbon surfaces by electrochemical reductive adsorption of the corresponding diazonium salt. Electrochemical conversion efficiencies of 4‐nitrophenyl moieties to 4‐aminophenyl moieties on gold versus on glassy carbon in a protic medium were investigated using X‐ray photoelectron spectroscopy (XPS). In total contrast to all previous comparative studies showing greater electrochemical reactivity of aryl diazonium salt‐derived layers on gold than on glassy carbon, a much lower rate of conversion to 4‐aminophenyl was observed on gold than on glassy carbon by both cyclic voltammetry (CV) and chronoamperometry (CA) methods. The lower electron transfer rate during conversion observed on gold versus glassy carbon was proposed to be due to a mechanism related to the molecular structure rearrangement of 4‐nitrophenyl during the process on glassy carbon. However, whilst complete conversion of 4‐nitrophenyl to 4‐aminophenyl on gold by chronoamperometry was achieved, on glassy carbon complete reduction could not be achieved under the same conditions.  相似文献   
82.
We present an extension of some popular hindered rotor (HR) models, namely, the one-dimensional HR (1DHR) and the degenerated two-dimensional HR (d2DHR) models, allowing for a simple and accurate treatment of internal rotations. This extension, based on the use of a variable kinetic function in the Hamiltonian instead of a constant reduced moment of inertia, is extremely suitable in the case of rocking/wagging motions involved in dissociation or atom transfer reactions. The variable kinetic function is first introduced in the framework of a classical 1DHR model. Then, an effective temperature and potential dependent constant is proposed in the cases of quantum 1DHR and classical d2DHR models. These methods are finally applied to the atom transfer reaction SiCl(3)+BCl(3)→SiCl(4)+BCl(2). We show, for this particular case, that a proper accounting of internal rotations greatly improves the accuracy of thermodynamic and kinetic predictions. Moreover, our results confirm (i) that using a suitably defined kinetic function appears to be very adapted to such problems; (ii) that the separability assumption of independent rotations seems justified; and (iii) that a quantum mechanical treatment is not a substantial improvement with respect to a classical one.  相似文献   
83.
A series of lanthanide-doped nonanuclear yttrium(III) clusters with general formulas (Y(9-x)Ln(x))(acac)(16)(μ(3)-OH)(8)(μ(4)-O)(μ(4)-OH) (Ln = Pr, Eu, Tb, Dy, and Yb) were synthesized. Characterization by single-crystal X-ray diffraction allowed for analysis of relative populations of yttrium (Z = 39) and dopant trivalent lanthanide (Z = 59-70) at every crystallographic metal position. Nonuniform distribution of ions along the three different sites seems to be correlated to the site volume and the ratio of ionic radii. In support, luminescence spectra of europium(III)-doped nonanuclear clusters were measured over a wide range of dopant concentrations. Emission intensities of peaks characteristic of specific sites correlate well with the site population determined through X-ray diffraction.  相似文献   
84.
An escapade in the world of sulfenate anions is described and shows that these nucleophiles, despite being described as unstable species, are mild and efficient sulfinylating agents, allowing access to a variety of allyl and aryl sulfoxides under smooth and operationally very simple conditions. Their use in asymmetric catalysis is also possible allowing the preparation of enantio-enriched sulfoxides. Moreover, such anions have been involved in the development of two new pseudodomino processes.  相似文献   
85.
The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.  相似文献   
86.
A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.  相似文献   
87.
88.
Amphiphilic polycarbonate–poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)‐b‐poly(β‐malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD), associated with iPrOH as an initiator, provided iPrO?PTMC?OH, which served as a macroinitiator in the controlled ROP of benzyl β‐malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO?PTMC‐b‐PMLABe?OH copolymers were then hydrogenolyzed into the parent iPrO?PTMC‐b‐PMLA?OH copolymers. A range of well‐defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol?1; ÐM=1.28–1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC‐b‐PMLA copolymers with different hydrophilic weight fractions (11–75 %) self‐assembled in phosphate‐buffered saline upon nanoprecipitation into well‐defined nano‐objects with Dh=61–176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta‐potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC‐b‐PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.  相似文献   
89.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   
90.
A spiropyran‐based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N3O5 coordination sphere. The air‐stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号