首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   56篇
  国内免费   6篇
化学   983篇
晶体学   17篇
力学   51篇
数学   159篇
物理学   343篇
  2024年   2篇
  2023年   13篇
  2022年   35篇
  2021年   70篇
  2020年   38篇
  2019年   47篇
  2018年   50篇
  2017年   31篇
  2016年   51篇
  2015年   59篇
  2014年   50篇
  2013年   115篇
  2012年   131篇
  2011年   116篇
  2010年   75篇
  2009年   79篇
  2008年   84篇
  2007年   75篇
  2006年   60篇
  2005年   48篇
  2004年   51篇
  2003年   35篇
  2002年   29篇
  2001年   26篇
  2000年   16篇
  1999年   21篇
  1998年   9篇
  1997年   11篇
  1996年   15篇
  1995年   14篇
  1994年   13篇
  1993年   14篇
  1992年   15篇
  1991年   11篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1968年   1篇
排序方式: 共有1553条查询结果,搜索用时 578 毫秒
81.
When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L(x), where x is associated with the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral information contained in L(x) is directly related to the resonance spectrum. Such procedure, known as the "harmonic inversion problem" (HIP), can be solved by the "filter diagonalization method" (FDM) providing sufficient precision and resolution for the spectral analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure, without the need to solve eigenvalue equations.  相似文献   
82.
The susceptible-infected-susceptible (SIS) epidemics in a scale-free network in which each node is a square lattice itself is investigated through large-scale computer simulations. The model combines a local contact process among individuals in a node (or city) with stochastic long-range infections due to people traveling between cities interconnected by the national transportation scale-free network. A nonzero epidemic threshold is found and it is approached with a power-law behavior by the density of infected individuals, as observed in the small-world network of Watts and Strogatz. Also, the epidemic propagation follows a 1/f1/f, hierarchical dynamics from the highly connected square lattices to the smaller degree nodes in outbreaks with sizes distributed accordingly a Gaussian function.  相似文献   
83.
A virus outbreak challenges the economic, medical, and public health infrastructure worldwide. More than one virus capable of triggering diseases have been identified per year since 1972, which requires the development of new ways of treatment and prevention, however, such processes are not rapid and easy. With the pandemic scenario experienced since early 2020, several drugs with well-known purposes have gained prominence, due to speculation of their use in the treatment against the new coronavirus. Among the main drugs studied, the vast majority contain a heterocyclic structure. In this review, we presented the traditional and efficient synthesis of 15 drugs that have been studied for the COVID-19 treatment, containing in their structure heterocycles like indole, quinoline, pyrimidone, tetrahydrofuran, pyrrolidine, triazole, pyridazine, pyrazole, pyrrolopyrimidine, azetidine, pyrrolotriazine, pyrazine, tetrahydropyran, benzofuran, spiroketal, and thiazole. Furthermore, we have shown the original applications, as well as their structure–activity relationship and what is their situation as a drug candidate against COVID-19. Thus, the objective was to consolidate the main synthetic and pharmacological aspects involving clinically developed heterocycles that at some point were presented as promising against SARS-CoV-2.  相似文献   
84.
A combined experimental and theoretical study is presented to understand the novel observed nucleation and early evolution of Ag filaments on β‐Ag2MoO4 crystals, driven by an accelerated electron beam from an electronic microscope under high vacuum. The growth process, chemical composition, and the element distribution in these filaments are analyzed in depth at the nanoscale level using field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) with energy‐dispersive spectroscopy (EDS) characterization. To complement experimental results, chemical stability, structural and electronic aspects have been studied systematically using first‐principles electronic structure theory within a quantum theory of atoms in molecules (QTAIM) framework. The Ag nucleation and formation on β‐Ag2MoO4 are a result of structural and electronic changes of the AgO4 tetrahedral cluster as a constituent building block of β‐Ag2MoO4, consistent with Ag metallic formation. The formation of Ag filament transforms the β‐Ag2MoO4 semiconductor from n‐ to p‐type concomitant with the appearance of Ag defects.  相似文献   
85.
86.
Herein, we describe a highly regio‐ and stereoselective radical‐mediated and molecular‐oxygen (O2)‐dependent hydrostannylation of phenyl propargylic alcohols and their derivatives. There is a significant steric effect on the stereoselectivity of the tin‐radical addition. Further, the uncatalyzed regio‐ and stereoselective hydrostannylation of aryl propargylic alcohols with nBu3SnH and Ph3SnH is also described and occurs with near titration kinetics. Although the uncatalyzed addition with nBu3SnH gave a remarkable γ‐regioselectivity irrespective of the electronic nature of the aryl moiety, addition with Ph3SnH appears to be driven by the electronic nature of the aryl alkynes.  相似文献   
87.
In this review, the roles of room temperature ionic liquids (RTILs) and RTIL based solvent systems as proposed alternatives for conventional organic electrolyte solutions are described. Ionic liquids are introduced as well as the relevant properties for their use in electrochemistry (reduction of ohmic losses), such as diffusive molecular motion and ionic conductivity. We have restricted ourselves to provide a survey on the latest, most representative developments and progress made in the use of ionic liquids as electrolytes, in particular achieved by the cyclic voltammetry technique. Thus, the present review comprises literature from 2015 onward covering the different aspects of RTILs, from the knowledge of these media to the use of their properties for electrochemical processes. Out of the scope of this review are heat transfer applications, medical or biological applications, and multiphasic reactions.  相似文献   
88.
The direct, one-pot oxidation of ethane to acetic acid was, for the first time, performed using a C-scorpionate complex anchored onto a magnetic core-shell support, the Fe3O4/TiO2/[FeCl23-HC(pz)3}] composite. This catalytic system, where the magnetic catalyst is easily recovered and reused, is highly selective to the acetic acid synthesis. The performed green metrics calculations highlight the “greeness” of the new ethane oxidation procedure.  相似文献   
89.
Attempts to optimize heterogeneous catalysis often lack quantitative comparative analysis. The use of kinetic modelling leads to rate (k) and relative sorption equilibrium constants (K), which can be further rationalized using Quantitative Structure-Property Relationships (QSPR) based on Multiple Linear Regressions (MLR). Friedel-Crafts acylation using commercial and hierarchical BEA zeolites as heterogeneous catalysts, acetic anhydride as the acylating agent, and a set of seven substrates with different sizes and chemical functionalities were herein studied. Catalytic results were correlated with the physicochemical properties of substrates and catalysts. From this analysis, a robust set of equations was obtained allowing inferences about the dominant factors governing the processes. Not entirely surprising, the rate and sorption equilibrium constants were found to be explained in part by common factors but of opposite signs: higher and stronger adsorption forces increase reaction rates, but they also make the zeolite active sites less accessible to new reactant molecules. The most relevant parameters are related to the substrates’ molecular size, which can be associated with different reaction steps, namely accessibility to micropores, diffusion capacity, and polarizability of molecules. The relatively large set of substrates used here reinforces previous findings and brings further insights into the factors that hamper/speed up Friedel-Crafts reactions in heterogeneous media.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号