首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  国内免费   1篇
化学   26篇
晶体学   1篇
数学   7篇
物理学   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1972年   1篇
排序方式: 共有40条查询结果,搜索用时 4 毫秒
21.
We give a combinatorial proof of the Dedekind-Mertens formula by computing the initial ideal of the content ideal of the product of two generic polynomials. As a side effect we obtain a complete classification of the rank Cohen-Macaulay modules over the determinantal rings .

  相似文献   

22.
The finite electrosynthesis, requiring 20 voltammetric cycles at neutral pH, of insulating poly(o‐aminophenol) (PoAP)and its polymerization mechanism and chemical structure up to the outermost surface were reported in previous work. By reducing the number of voltammetric cycles, XPS, atomic force microscopy, and electrochemical experiments were here confined to partially grown PoAP to better understand the role of the platinum surface on the initial adhesion mechanism and polymer growth. XPS results from reduced number and conventional 20 cycles show that PoAP composition is the same at any cycle. The main differences imaged by atomic force microscopy between 1, 5, and 20 cycles are on the amount of ‘small‐sized particles’ adsorbed on platinum prone to ‘fill’ the empty sites. The progressive filling of the platinum sites with cycles was also proved by electrochemical test with potassium‐ferricyanide. These new results add valuable information, which sustain previous hypotheses on the growth process of PoAP chains, their composition, and lateral alignment. Some questions, concerning the identification of PoAP anchoring bonds on platinum, lateral H‐bonds with water, and inter‐chains interactions, still remain unanswered and will be further addressed by the employment of new advanced means of investigation already in progress. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
Particle detection in microstructures is a key procedure required by modern lab-on-a-chip devices. Unfortunately, state of the art approaches to impedance measuring as applied to cell detection do not perform well in regions characterized by non-homogeneous physical parameters due, for example, to the presence of air-liquid interfaces or when the particle-electrode distance is relatively high. This paper presents a robust impedance measurement technique and a circuit for detecting cells flowing in microstructures such as microchannels and microwells. Our solution makes use of an innovative three-electrode measurement scheme with asymmetric polarization in order to increase cell detection ability in microstructures featuring large electrode distances of up to 100 μm as well as to limit signal loss due to cell position relative to the electrodes. Compared to standard techniques, numerical simulations show that, with the proposed approach, the cell detection sensitivity is increased by more than 40%. In addition, we propose a custom circuit based on division instead of difference between signals, as in standard differential circuits, so as to reduce the baseline signal drift induced by non-homogeneous conductivity. A simplified analytical model shows an increase in the signal-to-noise-ratio comprised in the range 3.9-5.9. Experimental results, carried out using an open-microwell device made with flexible printed circuit board technology, are in agreement with simulations, suggesting a six-fold increase of the signal-to-noise ratio compared to the differential measurement technique. We were thus able to successfully monitor the process of isolating K562 leukemia cells inside open-microwells determining all single-cell events with no false positive detection.  相似文献   
24.
A simple and effective chromatographic method with suppressed conductivity detection was developed and validated to determine dissolved samples of octadecyltrimethylammonium bromide (C18H37N+Me3Br, ODTAB) for purity testing. A response surface methodology generated with a Doehlert matrix design was applied to optimize the chromatographic and detection conditions in ion-exchange chromatography (IEC) with conductivity detection in the chemical suppression mode. A three-factor Doehlert design was performed to fit a second-order model and jointly optimize the peak intensity and shorten analysis time through a global desirability function. Regenerant flow rate, volume fraction of acetonitrile in the acidic eluent and its flow rate were studied at seven, five and three levels, respectively. The optimized separation and detection conditions were accomplished by using a cation-exchange column eluted at 0.5 mL min−1 with an isocratic mobile phase composed of CH3CN and 25 mN H2SO4, 82/18 (v/v). Chemical suppression of ionic conductivity was performed by 100 mN tetrabutylammonium hydroxide (TBAOH) as a regenerant at a flow-rate of 4.0 mL min−1. Remarkably good agreement was found between predicted and experimental values of signal intensity and chromatographic retention. With the developed method, a linear calibration curve of ODTA+ as bromide salt from 5 to 1000 ppm was obtained using hexadecyltrimethylammonium bromide as internal standard. The estimated limit of detection was 0.3 ppm (S/N = 3). The effectiveness of electrochemically suppressed conductivity detection of ODTA+ was also demonstrated, thus making easier the whole detection operation and instrumental needs as well.  相似文献   
25.
26.
27.
Sorting and recovering specific live cells from samples containing less than a few thousand cells have become major hurdles in rare cell exploration such as stem cell research, cell therapy and cell based diagnostics. We describe here a new technology based on a microelectronic chip integrating an array of over 100,000 independent electrodes and sensors which allow individual and parallel single cell manipulation of up to 10,000 cells while maintaining viability and proliferation capabilities. Manipulation is carried out using dynamic dielectrophoretic traps controlled by an electronic interface. We also demonstrate the capabilities of the chip by sorting and recovering individual live fluorescent cells from an unlabeled population.  相似文献   
28.
Microfluidic networks are patterned in a dry film resist (Ordyl SY300/550) that is sandwiched in between two substrates. The technique enables fabrication of complex biochips with active elements both in the bottom and the top substrate (hybrid chips). The resist can be double bonded at relatively low temperatures without the use of extra adhesives. A postbake transfers the resist into a rigid structure. The resist is qualified in terms of resolution, biocompatibility and fluidic sealing. Fabrication in both a fully equipped cleanroom setting as well as a minimally equipped laboratory is described. The technique is applied for dielectrophoresis-based cell separation systems and a fuel cell reaction chamber with micropillars. The dry film resist can be considered a cheap and fast alternative to SU-8.  相似文献   
29.
A disposable amperometric biosensor for the determination of anticholinesterase activity in soil extracts is described. The sensitive membrane was obtained by co-crosslinking acetylcholinesterase and choline oxidase with bovine serum albumin using glutaraldehyde. The anticholinesterase activity of the soil extract was measured using chronoamperometry at 650 mV vs. Ag/AgCl to monitor the biocatalytically produced H2O2 before and after the inhibition step. An inhibition percentage of 38 +/- 4% was recorded for soil extracts spiked with 10 ppb of ethyl parathion. The device has the potential to be used as a gross sensor for the assessment of anticholinesterase activity in soil extracts.  相似文献   
30.
Advanced biosensors are frequently based on electrosynthesized polymeric films. In this context, the electrosynthesis mechanism underlying the electrochemical oxidation of 2-naphthol (2-NAP) in phosphate buffer at pH 7 on Pt electrodes has been investigated. The voltammetric behaviour suggested the formation of a non-conducting polymer (poly(2-NAP)) through an irreversible electrochemical process complicated by 2-NAP adsorption and fast electrode passivation. Repeat experiments showed the passive films to be strongly adherent to the Pt surface with thicknesses of approximately 10 nm, as estimated by in-situ electrochemical quartz crystal microbalance (EQCM) measurements and by X-ray photoelectron spectroscopy (XPS). The polymer structure was then investigated by XPS, which gave evidence of the presence of naphthalene rings bonded through poly(oxide) groups (C–O–C) and of quinonoid groups, probably present as the ends of polymeric chains. The polymer repeat unit and terminal groups derived by XPS analysis are in accordance with electrochemical results and with synthesis routes reported for phenol-derived compounds in aqueous solution. XPS also gave evidence of a large excess of oxygen, probably arising from water molecules entrapped by the polymeric chains, as suggested by angle-resolved XPS and thermal treatment of poly(2-NAP)/Pt film under ultra-high vacuum (UHV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号