首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   10篇
  国内免费   10篇
化学   88篇
晶体学   3篇
力学   1篇
数学   5篇
物理学   14篇
  2023年   7篇
  2022年   8篇
  2021年   10篇
  2020年   9篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2003年   1篇
  2002年   1篇
  1999年   3篇
  1991年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
91.
LiNi0.5Mn1.5O4(LNMO)spinel is one of the most promising high voltage cathode candidates for lithium ion batteries(LIBs).However,owing to the instability for organic electrolytes at 5V high voltage,it exhibits continuous oxidation,leading to the formation of unstable interface and the notorious dissolution of transition metal,which prevents the successful commercialization of LNMO.Herein,on the basis of energy level simulation,we present a high voltage resistant binder shielding strategy to address the challenging interfacial issue of LiNi0.5Mn1.5O4cathode.Our strategy is to design a novel poly(γ-glutamic acid)-c-1H,1H,9H,9H-perfluoro-1,9-nonanediol(γ-PGFO)binder with superior transition metal chelating effect and well-matched energy level to guarantee fantastic interfacial compatibility.It is demonstrated that the dissolution of transition metal is significantly suppressed in the presence ofγ-PGFO binder,which excels in the literature.It is also noted that intramolecular hydrogen binding of the well-designed binder can generate powerful facial-contact binding,which is significant for a promising binder.By encapsulating this binder inside the cathode matrix,the Li Ni0.5Mn1.5O4electrode exhibits a capacity of 105.8 m Ah g-1after 500cycles at 1 C with a capacity retention of 88.2%,which is significantly superior to that of polyvinylidene fluoride(PVDF)/Li Ni0.5Mn1.5O4electrode(a capacity of 82.9 m Ah g-1and a capacity retention of 63.4%).The overall Coulombic efficiency ofγ-PGFO/Li Ni0.5Mn1.5O4electrode is prominently improved to be 99.1%,compared with 95.5%of PVDF counterpart.The presented results demonstrate a promising strategy of amino acid-based binder with strong transition metal chelating capability for boosting the rapid development of high voltage lithium ion battery.  相似文献   
92.
Yao  Guanglei  Shao  Xue  Qiu  Zhiwei  Qiu  Fengxian  Zhang  Tao 《Cellulose (London, England)》2021,28(9):5719-5734
Cellulose - Recovery of the tellurium from wastewater is significant for both industrial applications and sustainable development due to the adverse impacts emanating from environmental pollution...  相似文献   
93.
Planning and operating a power grid is a nontrivial exercise due to conflicting objectives, nonlinear constraints and uncertainties at multiple decision levels. Considerable research work has been dedicated to independently solve different aspects of the overall problem. This survey provides a detailed review of state-of-the-art techniques in mathematical optimization trying to address challenges in this area. We also provide a set of open problems and research perspectives.  相似文献   
94.
Aqueous zinc(Zn)-metal cells with cost-effective components and high safety have long been a promising large-scale energy storage system,but Zn anodes are intrinsically unstable with common aqueous electrolytes,causing substantial underutilization of the theoretical capacity.In this work,we report a strictly neutral aqueous Zn electrolyte at a low cost by leveraging the dynamic hydrolysis equilibrium of a dual-salt Zn(Ac)2/NaAc(Ac:CH3COO?)formulation.With the pH regulation,the corrosion and hydrogen evolution encountered in Zn anodes can be suppressed significantly.This hybrid aqueous electrolyte not only enables dendrite-free Zn plating/stripping at a nearly 95%Coulombic efficiency[an increase of 24%compared to that of the single-salt 1 mol/L Zn(Ac)2 electrolyte],but also supports the reversible operation of Zn cells paired with either Na3V2(PO4)3 or iodine cathodes—the former delivers a high output voltage of 1.55 V with an energy level of 99.5 W·h/kg(based on the mass of the cathode),and the latter possesses a high specific capacity of 110.9 mA·h/g while yielding long-term cyclability(thousands of cycles).These findings open up a new avenue of modifying practical electrolytes having targeted properties to stabilize multivalent metal anodes.  相似文献   
95.
Neuropathic pain is described as the “most terrible of all tortures that a nerve wound may inflict.” The aim of the present study was to demonstrate the antinociceptive effect of Symplocos chinensis f. pilosa Ohwi water extract (SCW) and synthesized derivatives of the isolated compound. The antinociceptive effect was tested using the acetic acid-induced writhing and 5% formalin tests. Antinociceptive effects on neuropathic pain were evaluated using the von Frey test with chronic constriction injury (CCI) and surgical nerve injury (SNI) models and tail-flick test with a vincristine-induced pain model. An Ames test was also conducted. 5-hydroxymethylfurfural (5-HMF) was isolated and derivatives were synthesized with various acid groups. Among the plant water extracts, SCW showed significantly effective activity. Additionally, SCW presented antinociceptive effects in the neuropathic pain models. The SCW water fraction resulted in fewer writhes than the other fractions, and isolated 5-HMF was identified as an effective compound. Because 5-HMF revealed a positive response in the Ames test, derivatives were synthesized. Among the synthesized derivations, 5-succinoxymethylfurfural (5-SMF) showed the best effect in the neuropathic pain model. Our data suggest that SCW and the synthesized compound, 5-SMF, possess effective antinociceptive activity against neuropathic pain.  相似文献   
96.
Conceptually mimicking biomolecules’ ability to construct multiple-helical aggregates with emergent properties and functions remains a long-standing challenge. Here we report an atom-precise 18-copper nanocluster (NC), Cu18H(PET)14(TPP)6(NCS)3 ( Cu18H ) which contains a pseudo D3-symmetrical triple-helical Cu15 core. Structurally, Cu18H may be also viewed as sandwich type of sulfur-bridged chiral copper cluster units [Cu6−Cu6−Cu6], endowing three-layered 3D chirality. More importantly, the chiral NCs are aggregated into an infinite double-stranded helix supported by intra-strand homonuclear C−H⋅⋅⋅H−C dihydrogen contacts and inter-strand C−H/π and C−H/S interactions. The unique multi-layered 3D chirality and the double-helical assembly of Cu18H are evocative of DNA. Moreover, the collective behaviours of the aggregated NCs not only exhibit crystallization-induced emission enhancement (CIEE) and aggregation-induced emission enhancement (AIEE) effects in the deep-red region, but also efficiently catalyze electron transfer (ET) reaction. This study thus presents that hierarchical assemblies of atomically defined copper NCs could be intricate as observed for important biomolecules like DNA with emergent properties arising from aggregated behaviours.  相似文献   
97.
98.
Copolyimides were prepared from 4,4′-diaminodiphenylether (4,4′-ODA), 1,3-bis(4-aminophenoxy) benzene (TPER), and pyromellitic dianhydride (PMDA) through a three-step imidization process with different monomer compositions. The copolymerization disrupted the molecular regularity and decreased the intermolecular interaction of the polyimide chains. The X-ray diffraction (XRD) results indicated the prepared copolyimides showed the same semicrystalline character, but had various crystallinity and crystal forms. The copolymerization also changed the crystal morphologies of the polyimides. With increasing TPER ratio, the copolyimides started to form spherulites and hedrites, which then tended to grow more perfectly as the TPER ratio was further increased. The solubility of the copolyimides and their dependence on the crystallnity and the chain flexibility was investigated. These copolyimides exhibited excellent thermal and thermo-oxidative stability.  相似文献   
99.
Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000–K2HPO4–KH2PO4–H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1 → 3)-linked-β-d-glucopyranosyl and (1 → 3, 6)-linked-β-d-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1→)-β-d-glucopyranosyl at the O-6 position of (1→3, 6)-linked-β-d-glucopyranosyl of the main chain.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号