首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16069篇
  免费   2544篇
  国内免费   1863篇
化学   11386篇
晶体学   157篇
力学   987篇
综合类   122篇
数学   1646篇
物理学   6178篇
  2024年   35篇
  2023年   313篇
  2022年   411篇
  2021年   468篇
  2020年   583篇
  2019年   539篇
  2018年   443篇
  2017年   415篇
  2016年   684篇
  2015年   633篇
  2014年   879篇
  2013年   1114篇
  2012年   1294篇
  2011年   1416篇
  2010年   960篇
  2009年   945篇
  2008年   1059篇
  2007年   903篇
  2006年   810篇
  2005年   812篇
  2004年   621篇
  2003年   523篇
  2002年   571篇
  2001年   458篇
  2000年   409篇
  1999年   381篇
  1998年   322篇
  1997年   281篇
  1996年   309篇
  1995年   228篇
  1994年   256篇
  1993年   204篇
  1992年   215篇
  1991年   175篇
  1990年   136篇
  1989年   147篇
  1988年   94篇
  1987年   69篇
  1986年   75篇
  1985年   60篇
  1984年   34篇
  1983年   35篇
  1982年   27篇
  1981年   21篇
  1980年   17篇
  1979年   9篇
  1978年   10篇
  1976年   11篇
  1974年   12篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   
972.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   
973.
Heteroatom-doped polymers or carbon nanospheres have attracted broad research interest. However, rational synthesis of these nanospheres with controllable properties is still a great challenge. Herein, we develop a template-free approach to construct cross-linked polyphosphazene nanospheres with tunable hollow structures. As comonomers, hexachlorocyclotriphosphazene provides N and P atoms, tannic acid can coordinate with metal ions, and the replaceable third comonomer can endow the materials with various properties. After carbonization, N/P-doped mesoporous carbon nanospheres were obtained with small particle size (≈50 nm) and high surface area (411.60 m2 g−1). Structural characterization confirmed uniform dispersion of the single atom transition metal sites (i.e., Co-N2P2) with N and P dual coordination. Electrochemical measurements and theoretical simulations revealed the oxygen reduction reaction performance. This work provides a solution for fabricating diverse heteroatom-containing polymer nanospheres and their derived single metal atom doped carbon catalysts.  相似文献   
974.
Ordered mesoporous metal–organic frameworks (mesoMOFs) were constructed with a uniform pore size up to about 10 nm and thick microporous walls, opening up the possibility for the mass diffusion of large-size molecules through crystalline MOFs. The synergistic effects based on triblock copolymer templates and the Hofmeister salting-in anions promote the nucleation of stable MOFs in aqueous phase and the in situ crystallization of MOFs around templates, rendering the generation of a microcrystal with periodically arranged large mesopores. The improved mass transfer benefiting from large-pore channels, together with robust microporous crystalline structure, endows them as an ideal nanoreactor for the highly efficient digestion of various biogenic proteins. This strategy could set a guideline for the rational design of new ordered large-pore mesoMOFs with a variety of compositions and functionalities and pave a way for their potential applications with biomacromolecules.  相似文献   
975.
The design of controllable dynamic systems is vital for the construction of organelle-like architectures in living cells, but has proven difficult due to the lack of control over defined topological transformation of self-assembled structures. Herein, we report a DNA based dynamic assembly system that achieves lysosomal acidic microenvironment specifically inducing topological transformation from nanoparticles to organelle-like hydrogel architecture in living cells. Designer DNA nanoparticles are constructed from double-stranded DNA with cytosine-rich stick ends (C-monomer) and are internalized into cells through lysosomal pathway. The lysosomal acidic microenvironment can activate the assembly of DNA monomers, inducing transformation from nanoparticles to micro-sized organelle-like hydrogel which could further escape into cytoplasm. We show how the hydrogel regulates cellular behaviors: cytoskeleton is deformed, cell tentacles are significantly shortened, and cell migration is promoted.  相似文献   
976.
Density functional theory (DFT) calculations were performed to gain insight into the mechanism of the nickel-catalyzed hydrocyanation of terminal alkynes with Zn(CN)2 and water to exclusively generate the branched nitrile with excellent Markovnikov selectivity. After precatalyst activation to give the LNi(0) active species, the transformation proceeds via the following steps: (1) oxidative addition of H2O to the LNi(0) provides the intermediate LNi(II)H(OH); (2) ligand exchange of LNi(II)H(OH) with Zn(CN)2 gives the intermediate LNi(II)H(CN); (3) alkyne insertion to the LNi(II)H(CN) forms the alkenyl nickel complex, followed by the reductive elimination step reaching the final product. This mechanism is kinetically and thermodynamically more favorable than that of the experimental proposed ones. On the basis of the experimental observations, more water molecules cannot further improve the reaction as it has also been rationalized. Furthermore, the origin of the high regioselectivity of the product, the variable effectiveness of the metal mediator as function of ligands, as well as the high yield of the alkyl-substituted alkynes substrates, is analyzed in detail. © 2019 Wiley Periodicals, Inc.  相似文献   
977.
BiOBr synthesized by alcoholysis precipitation is used in the preparation of BiPO4/BiOBr composites by adding H3PO4. Pristine BiOBr and a series of BiPO4/BiOBr composites have been successfully synthesized using an entirely room-temperature production process. X-ray powder diffraction, scanning electron microscopy, High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectroscopy were used to investigated the bulk structure, surface morphology, element composition and optical properties of the samples. The degradation effect of different proportions of BiPO4/BiOBr composites, BiOBr and BiPO4 on Rhodamine B (RhB) was evaluated under visible LED light irradiation. Compared to pure BiOBr and BiPO4, the as-synthesized BiPO4/BiOBr composites showed enhanced performance, with 30% BiPO4/BiOBr composite showing the best performance, as it could degrade 95.66% of RhB (100 ml, 15 mg/L) within 120 min. The enhanced photocatalytic activity of BiPO4/BiOBr was attributed to the heterojunction formation between BiOBr and BiPO4 and efficient charge separation.  相似文献   
978.
In this study, we reported the inhibition profiles of 4′-acylpyrrole–5-fluoroindolin-2-one 3 with a C-3′ side chain for VEGFR2, PDGFR-β, and FGFR-1 protein kinases. The pyrrole-fused cyclohexanone moiety provided 3 with the best potency to inhibit the three kinases, and the C-3′ side chains contributed to the different inhibition profiles of 3 . Compound 3b with a C-3′ 2-carboxylethyl side chain showed good potency for the three kinase (IC50: 25–260 nM), and compound 3g with a N,N-dialkyl-2-carbamoylethyl side chain was more active for VEGFR2 (IC50: 59 nM) and PDGFR-β (IC50: 16 nM) than FGFR-1 (IC50: 1.7 μM). The C-3′ 3-(dialkylamino)propyl side chain accomplished 3h – j as selective PDGFR-β inhibitors (IC50: 7.8–13 nM). Compound 3b was further investigated and found potent to inhibit VEGF- and FGF-dependent cell proliferation with moderate in vivo anticancer activity. Results from docking simulations revealed that the interactions of 3b with VEGFR2 and FGFR-1 which could account for the different inhibition profiles of 3 .  相似文献   
979.
With the expectation of finding new and effective antitumor drugs, a series of novel N-(1H-benzo[d]imidazole-2-yl)-benzamide/benzenesulfonamide derivatives of dehydroabietic acid were synthesized and evaluated for cytotoxic activity against three human cancer cell lines (MCF-7, HeLa, and HepG2 cells) and one human normal hepatocyte cell line (LO2). As a result, a number of derivatives showed moderate to good antitumor activities. Among them, compound 8h exhibited the most potent activities against three cancer cell lines with IC50 values of 0.87 ± 0.18, 9.39 ± 0.72, and 8.31 ± 0.64 μM, respectively, and was less active to normal hepatocyte LO2 cells. Further mechanism studies revealed that compound 8h could arrest the cell cycle of MCF-7 cells at S phase and induce the apoptosis of MCF-7 cells in ROS-mediated mitochondrial pathway.  相似文献   
980.
Precise control of the micro-/nanostructures of nanomaterials, such as hollow multi-shelled structures (HoMSs), has shown its great advantages in various applications. Now, the crystal structure of building blocks of HoMSs are controlled by introducing the lattice distortion in HoMSs, for the first time. The lattice distortion located at the nanoscale interface of SnS2/SnO2 can provide additional active sites, which not only provide the catalytic activity under visible light but also improve the separation of photoexcited electron–hole pairs. Combined with the efficient light utilization, the natural advantage of HoMSs, a record catalytic activity was achieved in solid–gas system for CO2 reduction, with an excellent stability and 100 % CO selectivity without using any sensitizers or noble metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号