首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16069篇
  免费   2544篇
  国内免费   1863篇
化学   11386篇
晶体学   157篇
力学   987篇
综合类   122篇
数学   1646篇
物理学   6178篇
  2024年   35篇
  2023年   313篇
  2022年   411篇
  2021年   468篇
  2020年   583篇
  2019年   539篇
  2018年   443篇
  2017年   415篇
  2016年   684篇
  2015年   633篇
  2014年   879篇
  2013年   1114篇
  2012年   1294篇
  2011年   1416篇
  2010年   960篇
  2009年   945篇
  2008年   1059篇
  2007年   903篇
  2006年   810篇
  2005年   812篇
  2004年   621篇
  2003年   523篇
  2002年   571篇
  2001年   458篇
  2000年   409篇
  1999年   381篇
  1998年   322篇
  1997年   281篇
  1996年   309篇
  1995年   228篇
  1994年   256篇
  1993年   204篇
  1992年   215篇
  1991年   175篇
  1990年   136篇
  1989年   147篇
  1988年   94篇
  1987年   69篇
  1986年   75篇
  1985年   60篇
  1984年   34篇
  1983年   35篇
  1982年   27篇
  1981年   21篇
  1980年   17篇
  1979年   9篇
  1978年   10篇
  1976年   11篇
  1974年   12篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Xyloglucan and pectin are major non-cellulosic components of most primary plant cell walls. It is believed that xyloglucan and perhaps pectin are functioning as tethers between cellulose microfibrils in the cell walls. In order to understand the role of xyloglucan and pectin in cell wall mechanical properties, model cell wall composites created using Gluconacetobacter xylinus cellulose or cellulose nanowhiskers (CNWs) derived there from with different amounts of xyloglucan and/or pectin have been prepared and measured under extension conditions. Compared with pure CNW films, CNW composites with lower amounts of xyloglucan or pectin did not show significant differences in mechanical behavior. Only when the additives were as high as 60 %, the films exhibited a slightly lower Young’s modulus. However, when cultured with xyloglucan or pectin, the bacterial cellulose (BC) composites produced by G. xylinus showed much lower modulus compared with that of the pure BC films. Xyloglucan was able to further reduce the modulus and extensibility of the film compared to that of pectin. It is proposed that surface coating or tethering of xyloglucan or pectin of cellulose microfibrils does not alone affect the mechanical properties of cell wall materials. The implication from this work is that xyloglucan or pectin alters the mechanical properties of cellulose networks during rather than after the cellulose biosynthesis process, which impacts the nature of the connection between these compounds.  相似文献   
942.
以L-赖氨酸、乙二胺和端羧基聚乙二醇(PEG)为原料合成一种带聚乙二醇侧链的二元胺扩链剂(Lys-NH-PEG),然后以4,4'-二苯基甲烷二异氰酸酯(MDI)和Lys-NH-PEG为硬段,聚碳酸酯二醇(PCD)为软段,制备一种含端羧基聚乙二醇侧链的梳形聚氨酯.对所合成聚氨酯材料进行傅立叶变换红外光谱(FTIR)、氢核磁共振谱(1H-NMR)、凝胶渗透色谱(GPC)测试,测试结果表明得到了目标聚合物.该聚合物能在水中形成胶体,并能化学接枝白蛋白,表明所合成的聚氨酯的PEG侧链端羧基具有反应活性.这种具有可反应性的聚氨酯为进一步接枝生物分子以提高生物相容性提供了广阔的空间.  相似文献   
943.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   
944.
We present a facile approach to make aptamer‐conjugated FRET (fluorescent resonance energy transfer) nanoflowers (NFs) through rolling circle replication for multiplexed cellular imaging and traceable targeted drug delivery. The NFs can exhibit multi‐fluorescence emissions by a single‐wavelength excitation as a result of the DNA matrix covalently incorporated with three dye molecules able to perform FRET. Compared with the conventional DNA nanostructure assembly, NF assembly is independent of template sequences, avoiding the otherwise complicated design of DNA building blocks assembled into nanostructures by base‐pairing. The NFs were uniform and exhibited high fluorescence intensity and excellent photostability. Combined with the ability of traceable targeted drug delivery, these colorful DNA NFs provide a novel system for applications in multiplex fluorescent cellular imaging, effective screening of drugs, and therapeutic protocol development.  相似文献   
945.
A general, rapid, and undemanding method to generate at will functional oil‐filled nanocapsules through nanoprecipitation is reported. On the basis of polymer and hexadecane/water/acetone phase diagrams, the composition can be set so that polymer chains preferentially stick at the interface of the oil droplets to create nanocapsules. The nanocapsules can be decorated with biorelevant molecules (biotin, fluorescent tags, metal nanoparticles) within the shell and loaded with hydrophobic molecules in a simple one‐pot procedure.  相似文献   
946.
Chemically induced dimerization (CID) has proven to be a powerful tool for modulating protein interactions. However, the traditional dimerizer rapamycin has limitations in certain in vivo applications because of its slow reversibility and its affinity for endogenous proteins. Described herein is a bioorthogonal system for rapidly reversible CID. A novel dimerizer with synthetic ligand of FKBP′ (SLF′) linked to trimethoprim (TMP). The SLF′ moiety binds to the F36V mutant of FK506‐binding protein (FKBP) and the TMP moiety binds to E. coli dihydrofolate reductase (eDHFR). SLF′‐TMP‐induced heterodimerization of FKBP(F36V) and eDHFR with a dissociation constant of 0.12 μM . Addition of TMP alone was sufficient to rapidly disrupt this heterodimerization. Two examples are presented to demonstrate that this system is an invaluable tool, which can be widely used to rapidly and reversibly control protein function in vivo.  相似文献   
947.
The cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.  相似文献   
948.
In the self‐assembly of PdII ions and two different, but similarly shaped, ligands ( 1 and 2 ), neither random mixing nor self‐sorting of the two ligands into two unmixed structures was observed. Instead a mixed, yet sorted, Pd12( 1 )12( 2 )12 cantellated tetrahedron (and its pseudoisomer) was selectively formed, thus revealing a fine example of intramolecular self‐sorting. A case study showed that a homothetic ratio of >2 is necessary to observe cantellated tetrahedra.  相似文献   
949.
Imidazolium cations are promising candidates for preparing anion‐exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl‐substituted imidazolium cations depend on the electron‐donating effect and the hyperconjugation effect. Comparing 1,2‐dimethylimidazolium cations (1,2‐DMIm+) and 1,3‐dimethylimidazolium cations (1,3‐DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3‐DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.  相似文献   
950.
The polyaniline-gold (PANI-AuNPs) fibrillar nanocomposites were prepared via a simple one-pot synthesis route in ethylene glycol (EG) medium. The morphology of PANI-AuNPs was characterized by transmission electron microscopy (TEM), and their electrochemical properties were studied by CV, TAF and EIS measurement using an electrochemical workstation. The results show that the morphology of nanocomposites can be controlled by changing the temperature. The diameter of PANI-AuNPs composite nanofiber reduce from about 80 to 30 nm, and the size of AuNP also reduce from about 20 to 4 nm, with the rise of synthesized temperature. When the synthesized temperature is 10°C, the distribution of AuNPs is the best, and the amount of AuNPs dispersed in PANI is the most, as well as the electrochemical performance of PANI-AuNPs is the most excellent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号