首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   2篇
  国内免费   1篇
化学   186篇
晶体学   1篇
力学   1篇
数学   10篇
物理学   185篇
  2021年   2篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2014年   8篇
  2013年   11篇
  2012年   15篇
  2011年   10篇
  2010年   18篇
  2009年   10篇
  2008年   8篇
  2007年   12篇
  2006年   13篇
  2005年   7篇
  2004年   13篇
  2003年   12篇
  2002年   5篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   8篇
  1992年   5篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1981年   18篇
  1980年   4篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1976年   4篇
  1975年   6篇
  1974年   13篇
  1973年   13篇
  1972年   10篇
  1971年   7篇
  1969年   2篇
  1968年   5篇
  1967年   2篇
  1965年   2篇
  1961年   1篇
排序方式: 共有383条查询结果,搜索用时 62 毫秒
381.
The problem investigated is the break of a high-pressure pipeline carrying natural single-phase gas which may condensate (retrograde) when the pressure drops. Single-phase non-ideal gas is assumed using a general- ized equation of state. Taking advantage of the choked massflow condition, the break is split into a pipe flow problem and a dispersion flow problem, both solved using a finite difference control volume scheme. The transient flow field from the pipeline break location is expanded analytically, using an approximation of the governing equations, until ambient pressure is reached and matched to the corresponding gas dispersion flow field using as subgrid model a jet box with a time-varying equivalent nozzle area as an internal boundary of the dispersion domain. The turbulence models used for the pipe and dispersion flow fields are an empirical model of Reichard and the k–ϵ model for buoyant flow respectively. The pipe flow simulations indicate that the flow from the pipeline might include dispersed condensate which will affect quantitatively the mass flow rate from the pipeline and qualitatively the gas dispersion if the condensate rains out. The transient dispersion simulation shows that an entrainment flow field develops and mixes supersaturated gas with ambient warmer air to an unsaturated mixture. Because of the inertia of the ambient air, it takes time to develop the entrainment flow field. As a consequence of this and the decay of the mass flow with time, the lower flammability limit of the gas–air mixture reaches its most remote downstream position relatively early in the simulation (about 15 s) and withdraws closer to the break location.  相似文献   
382.
This is the second of the two last papers by V.N. Gribov concluding his 20 year long study of the problem of quark confinement in QCD. In this paper the analytic structure of quark and gluon Green functions is investigated in the framework of the theory of confinement based on the phenomenon of supercritical binding of light quarks. The problem of unitarity in a confining theory is discussed. The write-up remained unfinished and as such it is presented here. The author was planning to emphasise the link between the electroweak and strong interactions, and in particular the r?le of pions (Goldstone bosons) in confinement, to present an explicit solution for bound states, and to write down an analytic model for quark and gluon Green functions corresponding to confinement. Received: 15 February 1999 / Published online: 15 July 1999  相似文献   
383.
A new approach and a theoretical model for describing experimentally observed nonradiative effects are considered. Nonradiative transitions in an ensemble of polyatomic molecules are interpreted as conversion of absorbed energy of optical radiation to energy of thermal translational motion of gas molecules. The model includes explicit account for intermolecular interactions. The form of the corresponding model Hamiltonian in the approximation of pairwise interactions of molecules and methods for its calculation are proposed. It is shown that all required matrix elements of the theory are easy to calculate, and the method is suitable for both qualitative and quantitative analysis of nonradiative effects. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 3, pp. 289–295, May–June, 2000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号