首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   21篇
  国内免费   21篇
化学   439篇
晶体学   1篇
力学   14篇
数学   170篇
物理学   131篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   13篇
  2018年   11篇
  2017年   8篇
  2016年   23篇
  2015年   21篇
  2014年   26篇
  2013年   35篇
  2012年   48篇
  2011年   47篇
  2010年   28篇
  2009年   31篇
  2008年   56篇
  2007年   59篇
  2006年   58篇
  2005年   39篇
  2004年   42篇
  2003年   29篇
  2002年   32篇
  2001年   10篇
  1999年   15篇
  1998年   7篇
  1997年   11篇
  1996年   15篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1965年   2篇
  1921年   2篇
  1920年   1篇
  1919年   2篇
排序方式: 共有755条查询结果,搜索用时 828 毫秒
31.
The complex that forms between a boronic acid and a diol is often much more acidic than the starting boronic acid. In conditions where the solution pH is between the two pK(a) values, the boron atom will convert from a neutral trigonal form to an anionic tetrahedral form upon complexation. Such a change is likely to dramatically alter the electron density of neighboring groups. Utilizing this effect, we have designed and synthesized two nitrophenol-based boronic acid reporter compounds that change ionization states and therefore spectroscopic properties upon diol binding. Both compounds show significant UV changes upon addition of saccharides. For example, a blue shift of the absorption max from 373 to 332 nm was observed with the addition of D-fructose to 2-hydroxy-5-nitrophenylboronic acid at neutral pH. Such a reporter compound can be used as a recognition and signaling unit for the construction of polyboronic acid sensors for the selective and specific recognitions of saccharides of biological significance.  相似文献   
32.
33.
Cytochrome P450 (CYP) 3A4, 2D6, 2C9, 2C19, and 1A2 are the most important drug-metabolizing enzymes in the human liver. Knowledge of which parts of a drug molecule are subject to metabolic reactions catalyzed by these enzymes is crucial for rational drug design to mitigate ADME/toxicity issues. SMARTCyp, a recently developed 2D ligand structure-based method, is able to predict site-specific metabolic reactivity of CYP3A4 and CYP2D6 substrates with an accuracy that rivals the best and more computationally demanding 3D structure-based methods. In this article, the SMARTCyp approach was extended to predict the metabolic hotspots for CYP2C9, CYP2C19, and CYP1A2 substrates. This was accomplished by taking into account the impact of a key substrate-receptor recognition feature of each enzyme as a correction term to the SMARTCyp reactivity. The corrected reactivity was then used to rank order the likely sites of CYP-mediated metabolic reactions. For 60 CYP1A2 substrates, the observed major sites of CYP1A2 catalyzed metabolic reactions were among the top-ranked 1, 2, and 3 positions in 67%, 80%, and 83% of the cases, respectively. The results were similar to those obtained by MetaSite and the reactivity + docking approach. For 70 CYP2C9 substrates, the observed sites of CYP2C9 metabolism were among the top-ranked 1, 2, and 3 positions in 66%, 86%, and 87% of the cases, respectively. These results were better than the corresponding results of StarDrop version 5.0, which were 61%, 73%, and 77%, respectively. For 36 compounds metabolized by CYP2C19, the observed sites of metabolism were found to be among the top-ranked 1, 2, and 3 sites in 78%, 89%, and 94% of the cases, respectively. The computational procedure was implemented as an extension to the program SMARTCyp 2.0. With the extension, the program can now predict the site of metabolism for all five major drug-metabolizing enzymes with an accuracy similar to or better than that achieved by the best 3D structure-based methods. Both the Java source code and the binary executable of the program are freely available to interested users.  相似文献   
34.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   
35.
We report on imaging living bacterial cells by using a correlated tapping-mode atomic force microscopy (AFM) and confocal fluorescence lifetime imaging microscopy (FLIM). For optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells, we explored different methods of bacterial sample preparation, such as spreading the cells on poly-L-lysine coated surfaces or agarose gel coated surfaces. We have found that the agarose gel containing 99% ammonium acetate buffer can provide sufficient local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and signal-to-noise ratio of the AFM images. Near-field AFM-tip-enhanced fluorescence lifetime imaging (AFM-FLIM) holds high promise on obtaining fluorescence images beyond optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging bacterial living cells, we demonstrated a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging of living bacterial cells to characterize cell polarity.  相似文献   
36.
Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles   总被引:1,自引:0,他引:1  
Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.  相似文献   
37.
This communication describes the synthesis and characterization of immobilized PAMAM dendrons onto a surface modified silicon wafer substrate (functionalized using plasma polymerized PAA) using a "growing from" strategy.  相似文献   
38.
Deoxynivalenol (DON) is a mycotoxin produced by several Fusarium species and is toxic to a wide range of organisms, including human beings and livestock. To produce large amounts of pure DON for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Rice cultured with Fusarium graminearum and field mouldy corn infected by F. graminearum were extracted with methanol and found to contain 1.16 and 1.30 mg DON/g, respectively. The extracts were concentrated and then separated using a biphasic solvent system consisting of ethyl acetate-water (1:1, v/v). Collected fractions were analyzed by high-performance liquid chromatography (HPLC) and identified by congruent retention time and UV/vis spectrum and mass spectrometric data. Fractions containing DON were combined and freeze-dried. This method produced 116 mg and 65 mg DON with a purity of greater than 94.9% from 200 g of the rice culture and the mouldy corn, respectively. The HSCCC method had a recovery rate of DON at 88% from the crude extracts of both samples. This one-step purification method provided a simple and effective tool for obtaining a large amount of DON, an essential material for studies related to toxicology and detoxification of this mycotoxin.  相似文献   
39.
40.
A technique that uses the intrinsic mass‐based separation capability of a quadrupole mass spectrometer has been used to resolve spectral radiometric interference of two isotopes of the same element. In this work the starting sample was a mixture of 137Cs and 134Cs and was (activity) dominated by 137Cs. This methodology separated and ‘implanted’ 134Cs that was later quantified for spectral features and activity with traditional radiometric techniques. This work demonstrated a 134Cs/137Cs activity ratio enhancement of >4 orders of magnitude and complete removal of 137Cs spectral features from the implanted target mass (i.e. 134). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号