首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
化学   35篇
力学   1篇
数学   4篇
物理学   28篇
  2023年   3篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1993年   3篇
  1992年   1篇
  1982年   1篇
排序方式: 共有68条查询结果,搜索用时 296 毫秒
61.
62.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   
63.
We compare coupled-cluster (CC) and configuration-interaction (CI) results for (56)Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f(7/2) orbit and the f(5/2), p(3/2), p(1/2) orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level.  相似文献   
64.
The electron-attached (EA) and ionized (IP) symmetry-adapted-cluster configuration-interaction (SAC-CI) methods and their equation-of-motion coupled-cluster (EOMCC) analogs provide an elegant framework for studying open-shell systems. As shown in this study, these schemes require the presence of higher-order excitations, such as the four-particle-three-hole (4p-3h) or four-hole-three-particle (4h-3p) terms, in the electron attaching or ionizing operator R in order to produce accurate ground- and excited-state potential energy surfaces of radicals along bond breaking coordinates. The full inclusion of the 4p-3h/4h-3p excitations in the EA/IP SAC-CI and EOMCC methods leads to schemes which are far too expensive for calculations involving larger radicals and realistic basis sets. In order to reduce the large costs of such schemes without sacrificing accuracy, the active-space EA/IP EOMCC methodology [J. R. Gour et al., J. Chem. Phys. 123, 134113 (2005)] is extended to the EA/IP SAC-CI approaches with 4p-3h/4h-3p excitations. The resulting methods, which use a physically motivated set of active orbitals to pick out the most important 3p-2h/3h-2p and 4p-3h/4h-3p excitations, represent practical computational approaches for high-accuracy calculations of potential energy surfaces of radicals. To illustrate the potential offered by the active-space EA/IP SAC-CI approaches with up to 4p-3h/4h-3p excitations, the results of benchmark calculations for the potential energy surfaces of the low-lying doublet states of CH and OH are presented and compared with other SAC-CI and EOMCC methods, and full CI results.  相似文献   
65.
The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.  相似文献   
66.
67.
For the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release.  相似文献   
68.
A method to convert 2-hydroxy glycal ester to the corresponding 2-deoxy-2-C-alkyl glycal in a facile manner, through key reactions including (i) C-allylation at C-1, (ii) Wittig reaction, and (iii) Cope rearrangement of a 1,5-diene derivative, is reported. The α-anomer of the 1,5-diene derivative underwent Cope rearrangement to afford 2-deoxy-2-C-glycal derivative, whereas the β-anomer was found to be unreactive. Employing this sequence, 3,4,6-tri-O-benzyl-2-O-acetyl-1,5-anhydro-d-arabino-hex-1-enitol was transformed to 3,4,6-tri-O-benzyl-2-deoxy-2-C-alkyl-1,5-anhydro-D-arabino-hex-1-enitol. 2-Deoxy-2-C-alkyl glycal derivative is a suitable glycosyl donor to prepare 2-deoxy-2-C-alkyl glycosides, mediated through haloglycosylation and a subsequent dehalogenation. A number of 2-deoxy-2-C-alkyl glycosides, with both glycosyl and nonglycosyl moieties at the reducing end, are thus prepared from the glycal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号