首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2419篇
  免费   37篇
  国内免费   12篇
化学   1534篇
晶体学   16篇
力学   56篇
数学   372篇
物理学   490篇
  2022年   11篇
  2021年   12篇
  2020年   16篇
  2019年   25篇
  2017年   17篇
  2016年   38篇
  2015年   35篇
  2014年   34篇
  2013年   93篇
  2012年   99篇
  2011年   125篇
  2010年   68篇
  2009年   66篇
  2008年   128篇
  2007年   110篇
  2006年   141篇
  2005年   124篇
  2004年   120篇
  2003年   77篇
  2002年   96篇
  2001年   45篇
  2000年   43篇
  1999年   30篇
  1998年   28篇
  1997年   25篇
  1996年   34篇
  1995年   33篇
  1994年   39篇
  1993年   28篇
  1992年   37篇
  1991年   21篇
  1990年   20篇
  1989年   40篇
  1988年   29篇
  1987年   20篇
  1986年   23篇
  1985年   24篇
  1984年   28篇
  1983年   28篇
  1982年   38篇
  1981年   37篇
  1980年   33篇
  1979年   30篇
  1978年   31篇
  1977年   42篇
  1976年   32篇
  1975年   25篇
  1974年   32篇
  1973年   38篇
  1972年   11篇
排序方式: 共有2468条查询结果,搜索用时 15 毫秒
881.
882.
It is shown by means of calorimetry, IR and EPR spectroscopy, elemental analysis, chromatography, and viscosimetry that radicals formed during the low-temperature action of molecular chlorine on acrylamide or its solutions in ethanol or glycerol initiate the polymerization reaction of acrylamide. It is established that during the low-temperature chlorination of pure acrylamide, polymerization takes place in the temperature range of 180–210 K with a polymer yield of ∼10%. The low-temperature chlorination of 20% solutions of acrylamide in ethanol or glycerol was performed to increase the product yield. It is shown that the low-temperature chlorination of acrylamide solution in glycerol increases the polymer yield by a factor of approximately two, and the content of chlorine in it falls by a factor of around ten. The low-temperature chlorination of acrylamide solution in ethanol did not lead to an increase in the polymer yield. A small reduction was noted in the chlorine content of the polymer.  相似文献   
883.

Background

The repertoire of the antigen-binding receptors originates from the rearrangement of immunoglobulin and T-cell receptor genetic loci in a process known as V(D)J recombination. The initial site-specific DNA cleavage steps of this process are catalyzed by the lymphoid specific proteins RAG1 and RAG2. The majority of studies on RAG1 and RAG2 have focused on the minimal, core regions required for catalytic activity. Though not absolutely required, non-core regions of RAG1 and RAG2 have been shown to influence the efficiency and fidelity of the recombination reaction.

Results

Using a partial proteolysis approach in combination with bioinformatics analyses, we identified the domain boundaries of a structural domain that is present in the 380-residue N-terminal non-core region of RAG1. We term this domain the Central Non-core Domain (CND; residues 87-217).

Conclusions

We show how the CND alone, and in combination with other regions of non-core RAG1, functions in nuclear localization, zinc coordination, and interactions with nucleic acid. Together, these results demonstrate the multiple roles that the non-core region can play in the function of the full length protein.  相似文献   
884.
The photoisomerization process of 1,2-diphenylethylene (stilbene) is investigated using the spin-flip density functional theory (SFDFT), which has recently been shown to be a promising approach for locating conical intersection (CI) points (Minezawa, N.; Gordon, M. S. J. Phys. Chem. A2009, 113, 12749). The SFDFT method gives valuable insight into twisted stilbene to which the linear response time-dependent DFT approach cannot be applied. In contrast to the previous SFDFT study of ethylene, a distinct twisted minimum is found for stilbene. The optimized structure has a sizable pyramidalization angle and strong ionic character, indicating that a purely twisted geometry is not a true minimum. In addition, the SFDFT approach can successfully locate two CI points: the twisted-pyramidalized CI that is similar to the ethylene counterpart and another CI that possibly lies on the cyclization pathway of cis-stilbene. The mechanisms of the cis--trans isomerization reaction are discussed on the basis of the two-dimensional potential energy surface along the twisting and pyramidalization angles.  相似文献   
885.
Several studies have appeared in the past two years reporting that the continuum emission produced by the laser ablation of solid materials is strongly polarized. In a paper that appears to conflict with these findings, Asgill et al. report that they did not observe a significant amount of polarization produced by nanosecond laser excitation of nitrogen gas and laser ablation of copper and steel ( M.E. Asgill, H.Y. Moon, N. Omenetto, D.W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta Part B (2010) xxx-xxx [7]). Here we show that the apparent discrepancy is resolved when laser fluence and polarization are taken into account. Using a 532 nm Nd:YAG laser to ablate Al samples in air, we find that the degree of polarization, P, of the continuum is greater for s- vs. p-polarized excitation and that P decreases with increasing fluence. We show that P would be < 10% under the conditions of Asgill et al., whereas P > 60% is obtained at low fluences with s-polarized excitation. We also confirm that at high fluence the polarization of the discrete emission is much smaller than that of the continuum.  相似文献   
886.
887.
The photochemistry and thermodynamics of two terthiophene (TTh) derivatives bearing benzospiropyran (BSP) moieties, 1-(3,3″-dimethylindoline-6'-nitrobenzospiropyranyl)-2-ethyl 4,4″-didecyloxy-2,2':5',2″-terthiophene-3'-acetate (BSP-2) and 1-(3,3″-dimethylindoline-6'-nitrobenzospiropyranyl)-2-ethyl 4,4″-didecyloxy-2,2':5',2″-terthiophene-3'-carboxylate (BSP-3), differing only by a single methylene spacer unit, have been studied. The kinetics of photogeneration of the equivalent merocyanine (MC) isomers (MC-2 and MC-3, respectively), the isomerisation properties of MC-2 and MC-3, and the thermodynamic parameters have been studied in acetonitrile, and compared to the parent, non-TTh-functionalised, benzospiropyran derivative, BSP-1. Despite the close structural similarity of BSP-2 and BSP-3, their physicochemical properties were found to differ significantly; examples include activation energies (E(a(MC-2)) = 75.05 kJ mol(-1), E(a(MC-3)) = 100.39 kJ mol(-1)) and entropies of activation (ΔS = 43.38 J K(-1) mol(-1), ΔS = 37.78 J K(-1) mol(-1)) for the thermal relaxation from MC to BSP, with the MC-3 value much closer to the unmodified MC-1 value (46.48 J K(-1) mol(-1)) for this latter quantity. The thermal relaxation kinetics and solvatochromic behaviour of the derivatives in a range of solvents of differing polarity (ethanol, dichloromethane, acetone, toluene and diethyl ether) are also presented. Differences in the estimated values of these thermodynamic and kinetic parameters are discussed with reference to the molecular structure of the derivatives.  相似文献   
888.
Covering: up to January 2012The addition of a methyl moiety to a small chemical is a common transformation in the biosynthesis of natural products across all three domains of life. These methylation reactions are most often catalysed by S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs). MTs are categorized based on the electron-rich, methyl accepting atom, usually O, N, C, or S. SAM-dependent natural product MTs (NPMTs) are responsible for the modification of a wide array of structurally distinct substrates, including signalling and host defense compounds, pigments, prosthetic groups, cofactors, cell membrane and cell wall components, and xenobiotics. Most notably, methylation modulates the bioavailability, bioactivity, and reactivity of acceptor molecules, and thus exerts a central role on the functional output of many metabolic pathways. Our current understanding of the structural enzymology of NPMTs groups these phylogenetically diverse enzymes into two MT-superfamily fold classes (class I and class III). Structural biology has also shed light on the catalytic mechanisms and molecular bases for substrate specificity for over fifty NPMTs. These biophysical-based approaches have contributed to our understanding of NPMT evolution, demonstrating how a widespread protein fold evolved to accommodate chemically diverse methyl acceptors and to catalyse disparate mechanisms suited to the physiochemical properties of the target substrates. This evolutionary diversity suggests that NPMTs may serve as starting points for generating new biocatalysts.  相似文献   
889.
This critical review discusses the applicability of vibrational spectroscopic techniques, specifically Raman and mid-infrared, to the study of molecule-based electronics through a series of examples. We focus on a number of devices currently of interest, such as solar cells, organic light emitting diodes, molecular junctions, switches and transistors. Infrared and Raman spectroscopic techniques and their variations, the main focus of this article, can be used to investigate properties such as crystallinity, multiphasic distributions in three dimensions, as well as lifetimes, structures and energetics of excited-states on ultrashort to very long timescales (210 references).  相似文献   
890.
The K-Au-Ga system has been investigated at 350 °C for <50 at. % K. The potassium gold gallides K(0.55)Au(2)Ga(2), KAu(3)Ga(2), KAu(2)Ga(4) and the solid solution KAu(x)Ga(3-x) (x = 0-0.33) were synthesized directly from the elements via typical high-temperature reactions, and their crystal structures were determined by single crystal X-ray diffraction: K(0.55)Au(2)Ga(2) (I, I4/mcm, a = 8.860(3) ?, c = 4.834(2) ?, Z = 4), KAu(3)Ga(2) (II, Cmcm, a = 11.078(2) ?, b = 8.486(2) ?, c = 5.569(1) ?, Z = 4), KAu(2)Ga(4) (III, Immm, a = 4.4070(9) ?, b = 7.339(1) ?, c = 8.664(2) ?, Z = 2), KAu(0.33)Ga(2.67) (IV, I-4m2, a = 6.0900(9) ?, c = 15.450(3) ?, Z = 6). The first two compounds contain different kinds of tunnels built of puckered six- (II) or eight-membered (I) ordered Au/Ga rings with completely different cation placements: uniaxial in I and III but in novel 2D-zigzag chains in II. III contains only infinite chains of a potassium-centered 20-vertex polyhedron (K@Au(8)Ga(12)) built of ordered 6-8-6 planar Au/Ga rings. The main structural feature of IV is dodecahedral (Au/Ga)(8) clusters. Tight-binding electronic structure calculations by linear muffin-tin-orbital methods were performed for idealized models of I, II, and III to gain insights into their structure-bonding relationships. Density of states curves reveal metallic character for all compounds, and the overall crystal orbital Hamilton populations are dominated by polar covalent Au-Ga bonds. The relativistic effects of gold lead to formation of bonds of greater population with most post-transition elements or to itself, and these appear to be responsible for a variety of compounds, as in the K-Au-Ga system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号