首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   1篇
  国内免费   2篇
化学   159篇
晶体学   2篇
数学   18篇
物理学   20篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   11篇
  2013年   8篇
  2012年   15篇
  2011年   16篇
  2010年   11篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   8篇
  2005年   5篇
  2004年   13篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   8篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
51.
The title compound was obtained by reduction of diethyl (ferrocenylmethyl)malonate with lithium aluminium hydride in diethyl ether. The structure of this novel ferrocene derivative was assigned by means of elemental analysis, IR, [1H]NMR, and [13C]NMR spectroscopy. The structure was also confirmed by a single crystal X-ray study. The compound crystallizes in monoclinic P21/a space group with unit cell dimensions: a = 9.7360(6), b = 27.040(5), c = 14.767(3) Å, = 103.835(6)°, V = 3774.8(11) Å3, Z = 12. The asymmetric unit contains three crystallographically independent molecules. In the ferrocenyl moieties, the Fe–C bond distance values are in the range 2.006(5)—2.051(3) Å and C–C distances in the range 1.366(7)–1.425(4) Å. The cyclopentadienyl rings in each of the molecules are mutually twisted by about 13° from the eclipsed conformation. The hydroxyl groups are involved in the intermolecular O–H...O hydrogen bond formation with O-O distances in the range 2.686(3)–2.801(4) Å forming infinite two-dimensional network in a [0 0 1] plane. The crystal structure is additionally stabilized by C–H-O weak intermolecular hydrogen bonds.  相似文献   
52.
The title compound, [Hg(C6H4NO2)I(C6H5NO2)], has twofold symmetry along the Hg—I bond. The HgII ion coordinates one I atom [at 2.6045 (4) Å], two N and two O atoms [at 2.298 (3) and 2.481 (2) Å] from one picolinate ion, and one picolinic acid mol­ecule in a very irregular trigonal–bipyramidal coordination. The single hydr­oxy H atom required for chemical neutrality is both statistically (by crystal symmetry) and structurally disordered, and is involved in an inter­molecular O—H⋯O hydrogen bond [O⋯O = 2.455 (4) Å], connecting the mol­ecules into one‐dimensional infinite chains along the [101] direction.  相似文献   
53.
Heteroannularly substituted ferrocene derivatives can act as model systems for various hydrogen‐bonded assemblies of biomol­ecules formed, for instance, by means of O—H⋯O and N—H⋯O hydrogen bonding. The crystal structure analysis of 1′‐(tert‐butoxy­carbonyl­amino)­ferrocene‐1‐carbox­ylic acid, [Fe(C10H14NO2)(C6H5O2)] or (C5H4COOH)Fe(C5­H4NHCOOC(CH3)3, reveals two independent mol­ecules within the asymmetric unit, and these are joined into discrete dimers by two types of intermolecular hydrogen bonds, viz. O—H⋯O and N—H⋯O. The –COOH and –NHCOOR groups are archetypes for dimer formation via two eight‐membered rings. The O—H⋯O hydrogen bonds [2.656 (3) and 2.663 (3) Å] form a cyclic carboxylic acid dimer motif. Another eight‐membered ring is formed by N—H⋯O hydrogen bonds [2.827 (3) and 2.854 (3) Å] between the N—H group and an O atom of another carbamoyl moiety. The dimers are assembled in a herring‐bone fashion in the bc plane.  相似文献   
54.
The X‐ray crystal structure analysis of the title compound, C17H30O8, revealed a 4C1 conformation of the pyran­osyl ring [Cremer–Pople puckering parameters of Q = 0.568 (2) Å, θ = 5.1 (2) and ϕ = 218 (3)°]. The structure shows no deviations from the geometric parameters of pyran­oside carbohydrates. The hydroxyl groups participate in O—H⃛O hydrogen bonds, forming a two‐dimensional pattern [O⃛O = 2.811 (3) and 2.995 (3) Å].  相似文献   
55.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   
56.
We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2+?, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs.  相似文献   
57.
Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium.  相似文献   
58.
The temporal evolution of fluorescence from isolated single-wall carbon nanotubes (SWNTs) has been investigated using optical Kerr gating. The fluorescence emission is found to decay on a time scale of 10 ps. This fast relaxation arises from nonradiative processes, the existence of which explains the relatively low observed fluorescence efficiency in isolated SWNTs. From the measured decay rate and a determination of fluorescence quantum efficiency, we deduce a radiative lifetime of 110 ns.  相似文献   
59.
We present a new, completely three-dimensional proof of the fact, due to the combined work of Gabai and Eliashberg-Thurston, that every closed, oriented, connected, irreducible 3-manifold with nonzero second homology carries a universally tight contact structure.  相似文献   
60.
The title compound, C11H8N2O3S, crystallizes with two crystallographically independent mol­ecules, which are conformationally almost identical, per asymmetric unit. The dihedral angles between the phenyl and 2‐thio­fur­amide planes are 46.3 (1) and 47.0 (1)° for the first and second mol­ecule, respectively. Strong intramolecular N—H?O hydrogen bonds [N?O 2.664 (2) and 2.661 (2) Å] dictate an anti conformation of the C=S groups in relation to the furan‐O atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号