首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1140篇
  免费   24篇
  国内免费   3篇
化学   704篇
晶体学   32篇
力学   12篇
数学   100篇
物理学   319篇
  2023年   7篇
  2022年   21篇
  2021年   18篇
  2020年   14篇
  2019年   10篇
  2018年   10篇
  2017年   10篇
  2016年   26篇
  2015年   21篇
  2014年   25篇
  2013年   88篇
  2012年   88篇
  2011年   58篇
  2010年   27篇
  2009年   34篇
  2008年   53篇
  2007年   42篇
  2006年   39篇
  2005年   33篇
  2004年   31篇
  2003年   29篇
  2002年   32篇
  2001年   12篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   9篇
  1996年   10篇
  1995年   13篇
  1994年   11篇
  1993年   13篇
  1992年   13篇
  1991年   10篇
  1990年   15篇
  1989年   21篇
  1988年   10篇
  1987年   22篇
  1986年   15篇
  1985年   18篇
  1984年   20篇
  1983年   13篇
  1982年   10篇
  1981年   22篇
  1980年   10篇
  1979年   18篇
  1978年   27篇
  1977年   12篇
  1976年   14篇
  1975年   11篇
  1973年   10篇
排序方式: 共有1167条查询结果,搜索用时 15 毫秒
221.
222.
We study randomized gossip‐based processes in dynamic networks that are motivated by information discovery in large‐scale distributed networks such as peer‐to‐peer and social networks. A well‐studied problem in peer‐to‐peer networks is resource discovery, where the goal for nodes (hosts with IP addresses) is to discover the IP addresses of all other hosts. Also, some of the recent work on self‐stabilization algorithms for P2P/overlay networks proceed via discovery of the complete network. In social networks, nodes (people) discover new nodes through exchanging contacts with their neighbors (friends). In both cases the discovery of new nodes changes the underlying network — new edges are added to the network — and the process continues in the changed network. Rigorously analyzing such dynamic (stochastic) processes in a continuously changing topology remains a challenging problem with obvious applications. This paper studies and analyzes two natural gossip‐based discovery processes. In the push discovery or triangulation process, each node repeatedly chooses two random neighbors and connects them (i.e., “pushes” their mutual information to each other). In the pull discovery process or the two‐hop walk, each node repeatedly requests or “pulls” a random contact from a random neighbor and connects itself to this two‐hop neighbor. Both processes are lightweight in the sense that the amortized work done per node is constant per round, local, and naturally robust due to the inherent randomized nature of gossip. Our main result is an almost‐tight analysis of the time taken for these two randomized processes to converge. We show that in any undirected n‐node graph both processes take rounds to connect every node to all other nodes with high probability, whereas is a lower bound. We also study the two‐hop walk in directed graphs, and show that it takes time with high probability, and that the worst‐case bound is tight for arbitrary directed graphs, whereas Ω(n2) is a lower bound for strongly connected directed graphs. A key technical challenge that we overcome in our work is the analysis of a randomized process that itself results in a constantly changing network leading to complicated dependencies in every round. We discuss implications of our results and their analysis to discovery problems in P2P networks as well as to evolution in social networks. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 48, 565–587, 2016  相似文献   
223.
224.
Editorial     
  相似文献   
225.
226.
227.
We demonstrate that chaos can be controlled using multiplicative exponential feedback control. Unstable fixed points, unstable limit cycles and unstable chaotic trajectories can all be stabilized using such control which is effective both for maps and flows. The control is of particular significance for systems with several degrees of freedom, as knowledge of only one variable on the desired unstable orbit is sufficient to settle the system onto that orbit. We find in all cases that the transient time is a decreasing function of the stiffness of control. But increasing the stiffness beyond an optimum value can increase the transient time. We have also used such a mechanism to control spatiotemporal chaos is a well-known coupled map lattice model.  相似文献   
228.
Control of chaos     
We review the subject of control of chaotic systems paying special attention to exponential control. We also discuss the application of synchronization of chaotic systems to security in communications.  相似文献   
229.
230.
R K Varma 《Pramana》1997,49(1):17-31
A generalized Schrödinger formalism has been presented which is obtained as a Hilbert space representation of a Liouville equation generalized to include the action as a dynamical variable, in addition to the positions and the momenta. This formalism applied to a classical mechanical system had been shown to yield a similar set of Schrödinger like equations for the classical dynamical system of charged particles in a magnetic field. The novel quantum-like predictions for this classical mechanical system have been experimentally demonstrated and the results are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号