首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   58篇
  国内免费   5篇
化学   1403篇
晶体学   16篇
力学   70篇
数学   267篇
物理学   451篇
  2023年   12篇
  2022年   41篇
  2021年   62篇
  2020年   58篇
  2019年   58篇
  2018年   56篇
  2017年   45篇
  2016年   89篇
  2015年   60篇
  2014年   87篇
  2013年   133篇
  2012年   128篇
  2011年   166篇
  2010年   129篇
  2009年   138篇
  2008年   164篇
  2007年   123篇
  2006年   88篇
  2005年   77篇
  2004年   62篇
  2003年   60篇
  2002年   47篇
  2001年   46篇
  2000年   52篇
  1999年   21篇
  1998年   19篇
  1997年   20篇
  1996年   28篇
  1995年   18篇
  1994年   20篇
  1993年   9篇
  1992年   11篇
  1991年   15篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1937年   1篇
  1933年   1篇
排序方式: 共有2207条查询结果,搜索用时 31 毫秒
111.
A simple synthesis of 3-iodothiophenes was demonstrated using a wide range of (Z)-thioenynes. The key step in the iodocyclofunctionalization was the selective reduction of the triple bond in (Z)-thioenynes by the addition of iodine as an electrophilic agent. The 3-iodothiophenes were obtained in good to excellent yields of 61–92%. The 3-iodothiophenes were used as substrates in Sonogashira cross-coupling reactions to obtain thiophene acetylenes.  相似文献   
112.
The topological analysis of the electron density for electronic excited states under the formalism of the quantum theory of atoms in molecules using time‐dependent density functional theory (TDDFT) is presented. Relaxed electron densities for electronic excited states are computed by solving a Z‐vector equation which is obtained by means of the Sternheimer interchange method. This is in contrast to previous work in which the electron density for excited states is obtained using DFT instead of TDDFT, that is, through the imposition of molecular occupancies in accordance with the electron configuration of the excited state under consideration. Once the electron density of the excited state is computed, its topological characterization and the properties of the atoms in molecules are obtained in the same manner that for the ground state. The analysis of the low‐lying singlet and triplet vertical excitations of CO and C6H6 are used as representative examples of the application of this methodology. Altogether, it is shown how this procedure provides insights on the changes of the electron density following photoexcitation and it is our hope that it will be useful in the study of different photophysical and photochemical processes. © 2014 Wiley Periodicals, Inc.  相似文献   
113.
During the past century extensive uranium mining took place in Portugal for radium and uranium production. One such uranium mine was the Boco Mine, in operation during the 1960s and 70s. Mining waste and open pits were left uncovered since mine closure. During the nineties a quarry for sand extraction was operated in the same site and water from a local stream was extensively used in sand sieving. Downstream the mine area, agriculture soil is used for cattle grazing. Water from the stream, water wells, soil, pasture and sheep meat were now analyzed for radionuclides of uranium natural series. The U-series radionuclide 226Ra was generally the highest in concentrations especially in soil, pasture, and in internal organs of sheep. 226Ra concentrations were 1,093 ± 96 Bq/kg (dry weight, dw) in soil, 43 ± 3 Bq/kg (dw) in pasture, and 193 ± 84 mBq/kg (wet weight, ww) in muscle tissue of sheep. Other sheep internal organs displayed much higher 226Ra concentrations, such as the brain and kidneys with 1,850 ± 613 mBq/kg (ww) and 6,043 ± 6,023 mBq/kg (ww), respectively. Results of analyses of tissue samples from sheep grown in a comparison area were 2 to 16 times lower, depending on the organ. Absorbed radiation doses for internal organs were computed and may exceed 5.2 mGy/y in the case of kidneys, near three times higher than in animals from the reference area, but below the threshold for biological effects. Radionuclide transfer in the terrestrial food chain and radiation exposure of the human population is discussed.  相似文献   
114.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.  相似文献   
115.
Several efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and p-hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature. In this work, the hydroxyl reactivity of two kraft lignin grades towards 4,4′-diphenylmethane diisocyanate (MDI) was investigated. 31P NMR allowed the monitoring of the reactivity of each hydroxyl group in the lignin structure. FTIR spectra revealed the evolution of peaks related to hydroxyl consumption and urethane formation. These results might support new PU developments, including the use of unmodified lignin and the synthesis of MDI-functionalized biopolymers or prepolymers.  相似文献   
116.
This study introduces modified carbon paste electrodes with carbon nitride nanosheets (CNNS) and outlines their application for the determination of hydroxychloroquine sulfate (HCQ) in tablets and synthetic urine samples. CNNS were synthesized by hydrothermal route (200 °C, 10 h) using melamine and citric acid as their precursors. The carbon nitride nanosheets-based electrode (CNNS/E) presented a linear dynamic range for HCQ (LDR), ranging from 10.0 nmol l−1 to 6.92 μmol l−1, and detection (LOD) and quantification limits (LOQ) of 0.16 nmol l−1 and 0.52 nmol l−1, respectively. LOD and LOQ were calculated by the equations: LOD=3(Sd/b), and LOQ=10(Sd/b). The modified sensor presented excellent relative standard deviations for parameters such as repeatability (2.39 % and 1.87 %) and reproducibility (3.22 % and 2.32 %) in HCQ oxidation peaks (1 and 2). The CNNS/E has not shown significant variations in its anodic signal intensity in the presence of some organic and inorganic substances. It is worth bearing in mind that CNNS/E can be easily manufactured and the sensor has the lowest HCQ detection limits reported so far. The proposed sensor was successfully applied for HCQ determination in tablets and synthetic urine, showing good recovery values and an error of 0.60 % about comparative method in tablet samples, assuring the quality of the method.  相似文献   
117.
When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L(x), where x is associated with the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral information contained in L(x) is directly related to the resonance spectrum. Such procedure, known as the "harmonic inversion problem" (HIP), can be solved by the "filter diagonalization method" (FDM) providing sufficient precision and resolution for the spectral analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure, without the need to solve eigenvalue equations.  相似文献   
118.
A virus outbreak challenges the economic, medical, and public health infrastructure worldwide. More than one virus capable of triggering diseases have been identified per year since 1972, which requires the development of new ways of treatment and prevention, however, such processes are not rapid and easy. With the pandemic scenario experienced since early 2020, several drugs with well-known purposes have gained prominence, due to speculation of their use in the treatment against the new coronavirus. Among the main drugs studied, the vast majority contain a heterocyclic structure. In this review, we presented the traditional and efficient synthesis of 15 drugs that have been studied for the COVID-19 treatment, containing in their structure heterocycles like indole, quinoline, pyrimidone, tetrahydrofuran, pyrrolidine, triazole, pyridazine, pyrazole, pyrrolopyrimidine, azetidine, pyrrolotriazine, pyrazine, tetrahydropyran, benzofuran, spiroketal, and thiazole. Furthermore, we have shown the original applications, as well as their structure–activity relationship and what is their situation as a drug candidate against COVID-19. Thus, the objective was to consolidate the main synthetic and pharmacological aspects involving clinically developed heterocycles that at some point were presented as promising against SARS-CoV-2.  相似文献   
119.
120.
Progress in the photodynamic therapy (PDT) of cancer should benefit from a rationale to predict the most efficient of a series of photosensitizers that strongly absorb light in the phototherapeutic window (650–800 nm) and efficiently generate reactive oxygen species (ROS=singlet oxygen and oxygen‐centered radicals). We show that the ratios between the triplet photosensitizer–O2 interaction rate constant (kD) and the photosensitizer decomposition rate constant (kd), kD/kd, determine the relative photodynamic activities of photosensitizers against various cancer cells. The same efficacy trend is observed in vivo with DBA/2 mice bearing S91 melanoma tumors. The PDT efficacy intimately depends on the dynamics of photosensitizer–oxygen interactions: charge transfer to molecular oxygen with generation of both singlet oxygen and superoxide ion (high kD) must be tempered by photostability (low kd). These properties depend on the oxidation potential of the photosensitizer and are suitably combined in a new fluorinated sulfonamide bacteriochlorin, motivated by the rationale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号