首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3222篇
  免费   180篇
  国内免费   18篇
化学   2550篇
晶体学   24篇
力学   139篇
数学   219篇
物理学   488篇
  2023年   18篇
  2022年   52篇
  2021年   55篇
  2020年   61篇
  2019年   60篇
  2018年   38篇
  2017年   40篇
  2016年   118篇
  2015年   96篇
  2014年   136篇
  2013年   198篇
  2012年   293篇
  2011年   280篇
  2010年   201篇
  2009年   162篇
  2008年   242篇
  2007年   210篇
  2006年   194篇
  2005年   170篇
  2004年   139篇
  2003年   112篇
  2002年   119篇
  2001年   70篇
  2000年   41篇
  1999年   33篇
  1998年   23篇
  1997年   22篇
  1996年   37篇
  1995年   19篇
  1994年   20篇
  1993年   17篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   6篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   8篇
  1976年   5篇
  1974年   6篇
  1972年   2篇
排序方式: 共有3420条查询结果,搜索用时 15 毫秒
111.
The original Sasol catalytic system for ethylene tetramerization is composed of a Cr source, a PNP ligand, and MAO (methylaluminoxane). The use of expensive MAO in excess has been a critical concern in commercial operation. Many efforts have been made to replace MAO with non‐coordinating anions (e.g., [B(C6F5)4]?); however, most of such attempts were unsuccessful. Herein, an extremely active catalytic system that avoids the use of MAO is presented. The successive addition of two equivalent [H(OEt2)2]+[B(C6F5)4]? and one equivalent CrCl3(THF)3 to (acac)AlEt2 and subsequent treatment with a PNP ligand [CH3(CH2)16]2C(H)N(PPh2)2 ( 1 ) yielded a complex presumably formulated as [ 1 ‐CrAl (acac)Cl3(THF)]2+[B(C6F5)4]?2, which exhibited high activity when combined with iBu3Al (1120 kg/g‐Cr/h; ~4 times that of the original Sasol system composed of Cr (acac)3, iPrN(PPh2)2, and MAO). Via the introduction of bulky trialkylsilyl substituents such as –SiMe3, –Si(nBu)3, or –SiMe2(CH2)7CH3 at the para‐position of phenyl groups in 1 (i.e., by using [CH3(CH2)16]2C(H)N[P(C6H4p‐SiR3)2]2 instead of 1 ), the activities were dramatically improved, i.e., tripled (2960–3340 kg/g‐Cr/h; more than 10 times that of the original Sasol system). The generation of significantly less PE (<0.2 wt%) even at a high temperature is another advantage achieved by the introduction of bulky trialkylsilyl substituents. NMR studies and DFT calculations suggest that increase of the steric bulkiness on the alkyl‐N and P‐aryl moieties restrict the free rotation around (alkyl)N–P (aryl) bonds, which may cause the generation of more robust active species in higher proportion, leading to extremely high activity along with the generation of a smaller amount of PE.  相似文献   
112.
113.
114.
At the single-molecule level, this laboratory has been making direct measurements of polymer diffusion at and near surfaces. Parameters of special interest have been to understand (a) the role of molecular weight, N; (b) the role of surface coverage, which may range from dilute to saturated, and (c) the role of the surface, which may range from hard (a silicon wafer) to soft (a supported lipid bilayer), and (d) the use of external fields to direct the transport of small molecules through narrow surface channels that are one macromolecule thick.  相似文献   
115.
A stationary phase was prepared by chemical derivatization of the support particles with a layer of copolymer composed of styrene and N‐phenyl acrylamide. Silica monolith particles of ca. 2.6 µm (volume‐based average) have been prepared as the support particles by sol‐gel reaction followed by differential sedimentation. The particles were reacted with 3‐chloropropyl trimethoxysilane followed by sodium diethyldithiocarbamate to introduce an initiator moiety. Then, the copolymer layer was immobilized via reversible addition‐fragmentation transfer polymerization. The resultant phase was packed in glass‐lined stainless‐steel micro‐columns (1 x 150 mm) and evaluated for the separation of a mixture composed of five peptides (Trp‐Gly, Thr‐Tyr‐Ser, angiotensin I, isotocin and bradykinin). The effect of monomer mixing ratio (styrene versus N‐phenyl acrylamide) on the chromatographic separation efficiency of the stationary phase was examined. A number of theoretical plates (N) as high as 33 600 plates/column (224 000 plates/m, 4.46 µm plate height) was achieved using the column packed with the optimized stationary phase. The column‐to‐column reproducibility based on three columns packed with three different batches of stationary phase was found satisfactory in separation efficiency, retention factor, and asymmetry factor.  相似文献   
116.
A phase with both hydrophobic and hydrophilic functionalities has been synthesized by modification of ground silica monolith particles with C18 and 1‐[3‐(trimethoxysilyl)propyl] urea ligands. A series of phases was prepared by changing the ratio of the two ligands to determine the optimal ratio in view of separation efficiency. The resultant optimized stationary phase was packed in narrow‐bore glass‐lined stainless‐steel columns (1 × 300 mm and 2.1 × 100 mm) and used for the separation of synthetic peptides and proteins. The average numbers of theoretical plates (N) of 52 100/column (174 000/m, 5.75 µm plate height) and 35 500/column (118 000/m, 8.47 µm plate height) were achieved with the 300 mm column at a flow rate of 25 µL/min (0.86 mm/s) in 60:40 v/v acetonitrile/30 mM aqueous ammonium formate for the mixture of peptides (Thr‐Tyr‐Ser, Val‐Ala‐Pro‐Gly, angiotensin I, isotocin, and bradykinin) and for the mixture of proteins (myoglobin, human serum albumin, and insulin), respectively. Fast analysis of the peptides and proteins was also carried out at a flow rate of 0.9 mL/min (6.88 mm/s) with the 100 mm column and all the analytes were eluted within 2 min with good separation efficiency.  相似文献   
117.
We synthesized two new alternating polymers, namely P(Tt‐FQx) and P(Tt‐DFQx) , incorporating electron rich tri‐thiophene and electron deficient 6‐fluoroquinoxaline or 6,7‐difluoroquinoxaline derivatives. Both polymers P(Tt‐FQx) and P(Tt‐DFQx) exhibited high thermal stabilities and the estimated 5% weight loss temperatures are 425 and 460 °C, respectively. Polymers P(Tt‐FQx) and P(Tt‐DFQx) displayed intense absorption band between 450 and 700 nm with an optical band gap (Eg) of 1.78 and 1.80 eV, respectively. The determined highest occupied/lowest unoccupied molecular orbital's (HOMO/LUMO) of P(Tt‐DFQx) (?5.48 eV/?3.68 eV) are slightly deeper than those of P(Tt‐FQx) ( ?5.32 eV/?3.54 eV). The polymer solar cells fabricated with a device structure of ITO/PEDOT:PSS/ P(Tt‐FQx) or P(Tt‐DFQx) :PC70BM (1:1.5 wt %) + 3 vol % DIO/Al offered a maximum power conversion efficiency (PCE) of 3.65% with an open‐circuit voltage (Voc) of 0.59 V, a short‐circuit current (Jsc) of 10.65 mA/cm2 and fill factor (FF) of 59% for P(Tt‐FQx) ‐based device and a PCE of 4.36% with an Voc of 0.69 V, a Jsc of 9.92 mA/cm2, and FF of 63% for P(Tt‐DFQx) ‐based device. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 545–552  相似文献   
118.
We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1663–1672  相似文献   
119.
  相似文献   
120.
Recently, there have been reports regarding the presence of benzene in vitamin C drinks. This is caused by sodium benzoate and ascorbic acid (vitamin C), which can react together to induce benzene formation. While the headspace gas chromatography method is well known for the detection of benzene, there could be pitfalls in the process of benzene extraction. This study was performed to check if benzene could be generated under high-temperature incubation conditions. As a result, the amount of benzene detected by headspace-gas chromatography/mass spectrometry (HSGC/MS) was affected by temperature changes. As the temperature of the sample vial was increased, newly generated benzene from the headspace also increased, causing false-positive determination of benzene. Although 80 degrees C is generally accepted for the temperature of headspace sample vials, lower temperatures, such as 40 degrees C, minimize the false-positive identification of benzene. Considering that this minimization allows benzene to be quantified at around 5 ppb, this lower temperature should definitely be considered since benzene, which is formed in sodium benzoate, can appear in vitamin C drinks under certain circumstances. The proposed analysis method of benzene in vitamin C drinks by HSGC/MS at 40 degrees C is an accurate and universal method for the monitoring of benzene without false-positive identification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号