首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   45篇
  国内免费   1篇
化学   500篇
力学   3篇
数学   48篇
物理学   84篇
  2024年   2篇
  2023年   16篇
  2022年   21篇
  2021年   55篇
  2020年   31篇
  2019年   19篇
  2018年   17篇
  2017年   13篇
  2016年   34篇
  2015年   26篇
  2014年   24篇
  2013年   24篇
  2012年   42篇
  2011年   36篇
  2010年   15篇
  2009年   9篇
  2008年   30篇
  2007年   33篇
  2006年   19篇
  2005年   30篇
  2004年   17篇
  2003年   25篇
  2002年   17篇
  2001年   10篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有635条查询结果,搜索用时 296 毫秒
21.
The complex [Pd(κ2P,O‐{2‐(2‐MeOC6H4)2P}C6H4SO3)Me(dmso)] ( 1 ) is investigated for the copolymerization of (E) with norbornene (N) and functionalized N derivatives affording P(E‐co‐N) in excellent yields. Copolymer molar masses are higher than those of PE and increase with N concentration. In addition, the complex [Ti(κ2N,O‐{2,6‐F2C6H3N = C(Me)C(H) = C(CF3)O})2Cl2] ( 2 ) is evaluated as catalyst for living E‐co‐N copolymerization upon activation with dried methylaluminoxane between 25 and 90 °C. Copolymerization at different [N]/[E] feed ratios affords stereoirregular alternating high molar mass P(E‐co‐N) with narrow molar mass distribution. P(E‐co‐N) living copolymerization is demonstrated by kinetics at 50 °C. Block copolymers are synthesized and fully characterized.

  相似文献   

22.
In this study, we report a systematic study of the response of a charged microparticle confined in an optical trap and driven by electric fields. The particle is embedded in a polar fluid, hence, the role of ions and counterions forming a double layer around the electrodes and the particle surface itself has been taken into account. We analyze two different cases: (i) electrodes energized by a step‐wise voltage (DC mode) and (ii) electrodes driven by a sinusoidal voltage (AC mode). The experimental outcomes are analyzed in terms of a model that combines the electric response of the electrolytic cell and the motion of the trapped particle. In particular, for the DC mode we analyze the transient particle motion and correlate it with the electric current flowing in the cell. For the AC mode, the stochastic and deterministic motion of the trapped particle is analyzed either in the frequency domain (power spectral density, PSD) or in the time domain (autocorrelation function). Moreover, we will show how these different approaches (DC and AC modes) allow us, assuming predictable the applied electric field (here generated by plane parallel electrodes), to provide accurate estimation (3%) of the net charge carried by the microparticle. Vice versa, we also demonstrate how, once predetermined the charge, the trapped particle acts as a sensitive probe to reveal locally electric fields generated by arbitrary electrode geometries (in this work, wire‐tip geometry).  相似文献   
23.
The reactivity of the two diatomic congeneric systems [CO].+ and [SiO].+ towards methane has been investigated by means of mass spectrometry and quantum‐chemical calculations. While [CO].+ gives rise to three different reaction channels, [SiO].+ reacts only by hydrogen‐atom transfer (HAT) from methane under thermal conditions. A theoretical analysis of the respective HAT processes reveals two distinctly different mechanistic pathways for [CO].+ and [SiO].+, and a comparison to the higher metal oxides of Group 14 emphasizes the particular role of carbon as a second‐row p element.  相似文献   
24.
25.
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.  相似文献   
26.
27.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
28.
Spontaneous emissions of S. dentata Aiton and S. scabra Thunb., as well as the essential oil (EO) composition of the cited species, together with S. aurea L., were investigated. The chemical profile of the first two species is reported here for the first time. Moreover, in vitro tests were performed to evaluate the antifungal activity of these EOs on Trichophyton mentagrophytes, Microsporum canis, Aspergillus flavus, Aspergillus niger, and Fusarium solani. Secondly, the EO antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius was examined, and their antiviral efficacy against the H1N1 influenza virus was assessed. Leaf volatile organic compounds (VOCs), as well as the EOs obtained from the arial part of Salvia scabra, were characterized by a high percentage of sesquiterpene hydrocarbons (97.8% and 76.6%, respectively), mostly represented by an equal amount of germacrene D (32.8% and 32.7%, respectively). Both leaf and flower spontaneous emissions of S. dentata, as well as the EO composition, showed a prevalence of monoterpenes divided into a more or less equal amount of hydrocarbon and oxygenated compounds. Interestingly, its EO had a non-negligible percentage of oxygenated sesquiterpenes (29.5%). S. aurea EO, on the contrary, was rich in sesquiterpenes, both hydrocarbons and oxygenated compounds (41.5% and 33.5%, respectively). S. dentata EO showed good efficacy (Minimal Inhibitory Concentration (MIC): 0.5%) against M. canis. The tested EOs were not active against E. coli and S. aureus, whereas a low inhibition of S. dentata EO was observed on S. pseudointermedius (MIC = 10%). Once again, S. dentata EO showed a very good H1N1 inhibition; contrariwise, S. aurea EO was completely inactive against this virus. The low quantity of S. scabra EO made it impossible to test its biological activity. S. dentata EO exhibited interesting new perspectives for medicinal and industrial uses.  相似文献   
29.
A highly sensitive amperometric Prussian blue-based hydrogen peroxide sensor was developed using 3D pyrolytic carbon microelectrodes. A 3D printed multielectrode electrochemical cell enabled simultaneous highly reproducible Prussian blue modification on multiple carbon electrodes. The effect of oxygen plasma pre-treatment and deposition time on Prussian blue electrodeposition was studied. The amperometric response of 2D and 3D sensors to the addition of hydrogen peroxide in μM and sub-μM concentrations in phosphate buffer was investigated. A high sensitivity comparable to flow injection systems and a detection limit of 0.16 μM was demonstrated with 3D pyrolytic carbon microelectrodes at stirred batch condition  相似文献   
30.
We investigate the thermal conductivity of single-wall carbon nanotubes (SWCNT) either isolated or in contact with external media by using equilibrium molecular dynamics and the Boltzmann transport equation. We show that, contrary to existing controversies, both methods yield a finite value of the thermal conductivity for infinitely long tubes, as opposed to the case of 1D, momentum-conserving systems. Acoustic and flexure modes with mean free paths of the order of a few microns are identified as major contributors to the high value of SWCNT conductivity. We also find that the interaction with an external medium may substantially decrease the lifetime of the low-frequency vibrations, reducing the thermal conductivity by up to 2 orders of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号