首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
化学   24篇
数学   2篇
物理学   90篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   10篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1985年   6篇
  1984年   8篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有116条查询结果,搜索用时 0 毫秒
81.
82.
The inversion spectrum of 15ND3 in the v2 = 1 state was investigated in the millimeter wave region between 70 and 125 GHz. The inversion splitting (J = 0, K = 0) was calculated to be 97 279.998(35) MHz. The K = 3 splitting constants and the electric dipole moment have also been determined.  相似文献   
83.
84.
The rotational spectrum of isothiocyanic acid was measured for the isotopically enriched species H15NCS and HN13CS as well as HNC34S in natural abundance. In the frequency range from 8 to 240 GHz the a-type R-branch transitions were measured for all three isotopic species. The qQ1 transitions were identified in the microwave region for H15NCS and HN13CS. The rotational and centrifugal distortion constants were determined using Watson's Hamiltonian in the S reduction, extended empirically to higher order terms in the angular momentum. The molecular structure of isothiocyanic acid was reevaluated using a modified substitution method and the NCS chain was found to be bent: r(NH) = 0.993 A?, r(NC) = 1.207 A?, r(CS) = 1.5665 A?, ∠HNC = 131.7°, and ∠NCS = 173.8°. The molecule has the trans conformation.  相似文献   
85.
86.
Thirty b-type P, Q and R branch rotational transitions and nineteen a-type Q and R branch transitions have been detected and measured for the slightly asymmetric rotor molecule D14N3 in the frequency range from 8 to 340 GHz. The information obtained from the analysis of the observed frequencies are greatly improved values of the K-dependent parameters AO = 344746.589(64) MHz, and DK = 92.242(33) MHz, refined values for the rotational constants BO and CO, a complete set of quartic centrifugal distortion constants and several sextic distortion constants. Both a and b components of the electric dipole moment were determined giving a total dipole moment of μ = 1.76(5) debye.  相似文献   
87.
The rotational spectra of the HSS and DSS radicals were studied in selected regions between 331 and 883 GHz. The radicals were produced by discharging a gaseous mixture of hydrogen (or deuterium) and hydrogen sulfide in the cell. The observation of the b-type Q-branch and R-branch lines with K(a) = 2-1 and 3-2 for HSS and DSS, respectively, as well as the a-type R-branch lines allowed the improvement and the determination of the molecular constants among them (in MHz) We have reevaluated the harmonic force field of HSS and the ground state average and approximate equilibrium structural parameters. For the latter, we obtained r(HS) = 135.23 pm, r(SS) = 196.03 pm, and angle = 101.74 degrees. These results are compared with those from previous and own quantum chemical calculations as well as with results of related molecules. Copyright 2000 Academic Press.  相似文献   
88.
89.
The purpose of this work was to obtain reliable absolute intensities for the nu6 band of H2O2. It was undertaken because strong discrepancies exist between the different nu6 band intensities which are presently available in the literature (A. Perrin, A. Valentin, J.-M. Flaud, C. Camy-Peyret, L. Schriver, A. Schriver, and P. Arcas, J. Mol. Spectrosc. 1995. 171, 358), (R. May, J. Quant. Radiat. Transfer 1991. 45, 267), and (R. L. Sams, personal communication). The method which was chosen in the present work was to measure simultaneously the far-infrared absorptions and the nu6 absorptions of H2O2. Consequently, Fourier transform spectra of H2O2 were recorded at Giessen in a spectral range (370-1270 cm-1) which covers both the R branch of the torsion-rotation band and the P branch of the nu6 band which appear at low and high wavenumbers, respectively. From the low wavenumber data, the partial pressure of H2O2 present in the cell during the recording of the spectra was determined by calibrating the observed absorptions in the torsion-rotation band with intensities computed using the permanent H2O2 dipole moment measured by Stark effect (A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M. Badaoui, and J. Koput, J. Mol. Spectrosc. 1996. 176, 287-296) and [E. A. Cohen and H. M. Pickett, J. Mol. Spectrosc. 1981. 87, 582-583). In the high frequency range, this value of the partial pressure of H2O2 was used to measure absolute line intensities in the nu6 band. Finally, the line intensities in the nu6 band were fitted using the theoretical methods described in detail in our previous works. Using these new results on line intensities together with the line position parameters that we obtained previously, a new synthetic spectra of the nu6 band was generated, leading to a total band intensity of 0.185 x 10(-16) cm-1/(molecule.cm-2) at 296 K. It has to be pointed out that the new line intensities agree to within the experimental uncertainties with the individual line intensity measurements performed previously by May and by Sams. Copyright 1999 Academic Press.  相似文献   
90.
Fairly strong, regularly spaced absorption lines have been observed in the microwave spectrum of HNCS and assigned to b-type, Ka = 0 ← 1, Q-branch transitions arising from molecules in the lowest excited vibrational state. The Fortrat diagram of these lines has the appearance of a c-type Q branch, which is impossible in HNCS because of its symmetry. This anomalous b-type Q-branch spectrum is caused by strong a-type Coriolis interactions among the three low-lying bending modes; the Ka = 1 levels of the lowest excited vibrational state are perturbed and shifted lower in energy than the Ka = 0 levels for each J. This interpretation has been confirmed by the observation of P- and R-branch transitions associated with this Q branch. The band origin has been determined to be ?40 104.287 MHz (?1.3377 cm?1). The inversion of the Ka = 0 and 1 energy levels is consistent with the interpretation of HNCS as a quasi-linear molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号