首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   19篇
化学   607篇
晶体学   10篇
力学   19篇
数学   120篇
物理学   128篇
  2023年   7篇
  2022年   30篇
  2021年   29篇
  2020年   15篇
  2019年   16篇
  2018年   17篇
  2017年   11篇
  2016年   32篇
  2015年   19篇
  2014年   22篇
  2013年   39篇
  2012年   45篇
  2011年   50篇
  2010年   33篇
  2009年   41篇
  2008年   54篇
  2007年   50篇
  2006年   58篇
  2005年   46篇
  2004年   34篇
  2003年   42篇
  2002年   31篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   12篇
  1997年   6篇
  1996年   13篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1982年   2篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1945年   1篇
  1939年   1篇
  1936年   1篇
  1934年   1篇
排序方式: 共有884条查询结果,搜索用时 0 毫秒
21.
The title compound, C8H8NO4+·Cl·H2O, is the chloro­hydrated form of 2‐amino­benzene‐1,4‐dicarboxylic acid, the basic crystal structure of which is still not known. Mol­ecules are linked by classical N—H⋯O, O—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, mainly along the mol­ecular plane, into sheets built by unusual R64(26), R64(22) and R43(22) rings. The stacking between layers is stabilized by another N—H⋯Cl hydrogen bond and by π–π inter­actions between aromatic rings facing each other.  相似文献   
22.
A multidisciplinary investigation on Achillea moschata Wulfen (Asteraceae) is outlined herein. This work, part of the European Interreg Italy–Switzerland B-ICE project, originated from an ethnobotanical survey performed in Chiesa in Valmalenco (Sondrio, Lombardy, Northern Italy) in 2019–2021 which highlighted this species’ relevance of use in folk medicine to treat gastrointestinal diseases. In addition, this contribution included analyses of the: (a) phytochemical profile of the aqueous and methanolic extracts of the dried flower heads using LC-MS/MS; (b) morpho-anatomy and histochemistry of the vegetative and reproductive organs through Light, Fluorescence, and Scanning Electron Microscopy; (c) biological activity of the aqueous extract concerning the antioxidant and anti-inflammatory potential through cell-based in vitro models. A total of 31 compounds (5 phenolic acids, 13 flavonols, and 13 flavones) were detected, 28 of which included in both extracts. Covering and secreting trichomes were observed: the biseriate 10-celled glandular trichomes prevailing on the inflorescences represented the main sites of synthesis of the polyphenols and flavonoids detected in the extracts, along with volatile terpenoids. Finally, significant antioxidant and anti-inflammatory activities of the aqueous extract were documented, even at very low concentrations; for the first time, the in vitro tests allowed us to formulate hypotheses about the mechanism of action. This work brings an element of novelty due to the faithful reproduction of the traditional aqueous preparation and the combination of phytochemical and micromorphological research approaches.  相似文献   
23.
Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.  相似文献   
24.
Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as NO2, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors. Moreover, aromatic substrates can highly differ in their reactivity towards the various photogenerated species, thereby providing different behaviours towards photonitration. Despite the high complexity, it is possible to rationalise the different photonitration pathways in a coherent framework. In this context, this review paper has the goal of providing the reader with a guide on what to expect from the photonitration process under different conditions, how to study it, and how to determine which pathway(s) are prevailing in the formation of the observed nitroderivatives.  相似文献   
25.
The interaction between the achiral sulfonated porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H 2TPPS 4 (4-), and two chiral cationic surfactants has been studied by optical absorption, fluorescence, and circular dichroism (CD) spectroscopies. At surfactant concentrations above the critical micellar concentration (cmc) the porphyrin is included in the micellar aggregates, but it is CD silent. Below the cmc at a definite porphyrin/surfactant stoichiometry the formation of heteroaggregates with transfer of chirality to the porphyrin chromophore occurs. The preferred surfactant/porphyrin stoichiometry is 3:1, which suggests a structure driven by electrostatic and hydrophobic interactions between porphyrin and surfactant and dipolar and ionic interactions with the water solution. At surfactant concentrations above the cmc, depending on the protocol of preparation of the samples, the formation of the two kinds of aggregates can be observed, reversible for the simple surfactant micelles incorporating the porphyrin, but irreversible for the heteroaggregates.  相似文献   
26.
Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp) and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol) copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.  相似文献   
27.
A variety of primary and secondary amines give the conjugate reaction with β-nitroacrylates, via an anti-Michael addition, without any catalyst and/or solvent, allowing good yields of β-nitro-α-amino esters.  相似文献   
28.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   
29.
Three forms of chiroptical spectroscopies, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD) have been employed to study the configuration and conformational properties of the three molecules: (S)-3-phenylcyclopentanone, (S)-3-phenylcyclohexanone, and (S)-3-phenylcycloheptanone (including (S)-3-phenylcyclopentanone-2,2,5,5-d4 and (S)-3-phenylcyclohexanone-2,2,6,6-d4). ECD and VCD spectra in the mid-IR for the three molecular systems are marginally dependent on fine conformational details, as interpreted in terms of standard DFT computational methods, with common spectroscopic features to the three systems clearly identified. Accounting for vibronic coupling mechanisms reproduces the structuring of ECD n→π band. The ORD curves are quite similar for the three types of molecules, but their interpretation highlights a crucial role played by conformations of the cycloalkanone ring in the case of (S)-3-phenylcycloheptanone. The same conclusions are reached by considering the VCD spectra in the CH-stretching region.  相似文献   
30.
A surface-enhanced Raman spectroscopy (SERS) study of imidazolium ionic liquid stabilized gold(0) nanoparticles (GNPs) furnished previously unknown knowledge about the coordination and stabilization mode of the imidazolium cation. GNPs were prepared by hydrazine reduction of a chloroauric acid solution in 1-triethylene glycol monomethyl ether-3-methylimidazolium methanesulfonate 2 as ether-functionalized room-temperature ionic liquid (RTIL). UV-vis spectroscopy showed the presence of GNP aggregates as absorptions extended to the NIR region. A parallel coordination mode for the imidazolium cation of RTIL 2 on the GNP surface was observed by SERS, which occurred without the simultaneous coordination of the 1-triethylene glycol monomethyl ether-functionality. Instead of this, the ether-functionality was directed away from the GNP surface and acted as steric barrier between the GNPs/GNP aggregates, thus preventing further aggregation. These new insights suggest that the imidazolium cation is responsible for electrosteric stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号