首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   4篇
化学   145篇
力学   3篇
数学   23篇
物理学   23篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   8篇
  2017年   2篇
  2016年   5篇
  2014年   7篇
  2013年   7篇
  2012年   10篇
  2011年   16篇
  2010年   5篇
  2009年   8篇
  2008年   12篇
  2007年   5篇
  2006年   13篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1931年   1篇
  1897年   1篇
排序方式: 共有194条查询结果,搜索用时 31 毫秒
21.
22.
23.
Blood oxygenation level dependent (BOLD) response related to interictal activity was evaluated in a patient with post-traumatic focal epilepsy at repeated continuous electroencephalogram (EEG)-functional magnetic resonance imaging examinations. Lateralized interictal EEG activity induced a main cluster of activation co-localized with the anatomical lesion. Spreading of EEG interictal activity to both frontal lobes evoked bilateral clusters of activation indicating that topography of BOLD response might depend on the spatial distribution of epileptiform activity.  相似文献   
24.
Potential consequences of disasters involve overwhelming economic losses, large affected populations and serious environmental damages. Given these devastating effects, there is an increasing interest in developing measures in order to diminish the possible impact of disasters, which gave rise to the field of disaster operations management (DOM). In this paper we review recent OR/MS research in DOM. Our work is a continuation of a previous review from Altay and Green (2006). Our purpose is to evaluate how OR/MS research in DOM has evolved in the last years and to what extent the gaps identified by Altay and Green (2006) have been covered. Our findings show no drastic changes or developments in the field of OR/MS in DOM since the publication of Altay and Green (2006). Additionally to our comparative analysis, we present an original evaluation about the most common assumptions in recent OR/MS literature in DOM. Based on our findings we provide future research directions in order to make improvements in the areas where lack of research is detected.  相似文献   
25.
Rational design and development of tailorable simple synthesis process remains a centerpiece of investigational efforts toward engineering advanced hydrogels. In this study, a green and scalable synthesis approach is developed to formulate a set of gelatin‐based macroporous hybrid hydrogels. This approach consists of four sequential steps starting from liquid‐phase pre‐crosslinking/grafting, unidirectional freezing, freeze‐drying, and finally post‐curing process. The chemical crosslinking mainly involves between epoxy groups of functionalized polyethylene glycol and functional groups of gelatin both in liquid and solid state. Importantly, this approach allows to accommodate different polymers, chitosan or hydroxyethyl cellulose, under identical benign condition. Structural and mechanical anisotropy can be tuned by the selection of polymer constituents. Overall, all hydrogels show suitable structural stability, good swellability, high porosity and pore interconnectivity, and maintenance of mechanical integrity during 3‐week‐long hydrolytic degradation. Under compression, hydrogels exhibit robust mechanical properties with nonlinear elasticity and stress‐relaxation behavior and show no sign of mechanical failure under repeated compression at 50% deformation. Biological experiment with human bone marrow mesenchymal stromal cells (hMSCs) reveals that hydrogels are biocompatible, and their physicomechanical properties are suitable to support cells growth, and osteogenic/chondrogenic differentiation, demonstrating their potential application for bone and cartilage regenerative medicine toward clinically relevant endpoints.  相似文献   
26.
The molecular dimensions of 2‐ethylsulfanyl‐7‐(4‐methylphenyl)‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C20H18N4S, (I), 7‐(4‐chlorophenyl)‐2‐ethylsulfanyl‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C19H15ClN4S, (II), and 4,7‐bis(4‐chlorophenyl)‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazine, C19H14Cl2N4S, (III), show evidence for some aromatic delocalization in the pyrazole rings. The conformations adopted by the ethylsulfanyl substituents are different in all three compounds. There are no hydrogen bonds in any of the crystal structures, but pairs of molecules in (II) and (III) are linked into centrosymmetric dimers by π‐stacking interactions.  相似文献   
27.
Biogenic amines and amino acids are widely characterized in the pathways representing neurotransmission. Although several analytical methodologies have been used to detect specific target molecules in relevant fluids such as cerebrospinal fluid (CSF), multiple assays must be used to survey the primary pathways involved. This article describes the development of a GC/MS/MS method capable of analyzing up to 43 analytes (representing 20 amino acids and more than seven neurochemical pathways) from a single 50 microl CSF sample. In this procedure, a CSF sample is first treated with acetonitrile to precipitate proteins. The dried sample is then derivatized with a mixture of 2,2,3,3,3-pentafluoro-1-propanol and pentafluoropropionic acetic anhydride to replace all active hydrogen atoms with fluorine-containing groups. Due to the concentration difference between amino acids and neurotransmitters, these two compound classes are analyzed in separate injections of the same derivatized extract. The total run time for each injection is approximately 15-20 min. An essential feature of the method is the use of argon as a reagent gas for electron capture chemical ionization (ECCI), as the use of the more traditional gas (methane) lacked sufficient durability to be considered for use with the present instrumentation. This article describes the development of this method including a detailed investigation of the chemical ionization conditions used. The resultant conditions allow for the profiling of biogenic amines (e.g. serotonin, norepinephrine, and dopamine) in the low picogram per milliliter range.  相似文献   
28.
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.  相似文献   
29.
The molecular structure of the hydrocarbon 5,6;11,12‐di‐o‐phenylenetetracene (DOPT), its material characterization and evaluation of electronic properties is reported for the first time. A single‐crystal X‐ray study reveals two different motifs of intramolecular overlap with herringbone‐type arrangement displaying either face‐to‐edge or co‐facial face‐to‐face packing depicting intensive π–π interactions. Density functional theory (DFT) calculations underpin that a favorable electronic transport mechanism occurs by a charge hopping process due to a π‐bond overlap in the DOPT polymorph with co‐facial arene orientation. The performance of polycrystalline DOPT films as active organic semiconducting layer in a state‐of‐the‐art organic field effect transistor (OFET) device was evaluated and proves to be film thickness dependent. For 40 nm layer thickness it displays a saturation hole mobility (μhole) of up to 0.01 cm2 V?1 s?1 and an on/off‐ratio (Ion/Ioff) of 1.5×103.  相似文献   
30.
Pan T  Fiorini GS  Chiu DT  Woolley AT 《Electrophoresis》2007,28(16):2904-2911
A new technique for polymer microchannel surface modification, called in-channel atom-transfer radical polymerization, has been developed and applied in the surface derivatization of thermoset polyester (TPE) microdevices with poly(ethylene glycol) (PEG). X-ray photoelectron spectroscopy, electroosmotic flow (EOF), and contact angle measurements indicate that PEG has been grafted on the TPE surface. Moreover, PEG-modified microchannels have much lower and more pH-stable EOF, more hydrophilic surfaces and reduced nonspecific protein adsorption. Capillary electrophoresis separation of amino acid and peptide mixtures in these PEG-modified TPE microchips had good reproducibility. Phosducin-like protein and phosphorylated phosducin-like protein were also separated to measure the phosphorylation efficiency. Our results indicate that PEG-grafted TPE microchips have broad potential application in biomolecular analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号