首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
化学   42篇
力学   1篇
数学   3篇
物理学   14篇
  2022年   1篇
  2020年   3篇
  2017年   1篇
  2016年   5篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   4篇
  1978年   3篇
  1973年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
11.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   
12.
The design of metal–organic frameworks (MOFs) that incorporate more than one metal cluster constituent is a challenging task. Conventional one-pot reaction protocols require judicious selection of ligand and metal ion precursors, yet remain unpredictable. Stable, preformed nanoclusters, with ligand shells that can undergo additional coordination-driven reactions, provide a platform for assembling multi-cluster solids with precision. Herein, a discrete Co6S8(PTA)6 (PTA=1,3,5-triaza-7-phosphaadamantane) superatomic-metalloligand is assembled into a three-dimensional (3D) coordination polymer comprising Cu4I4 secondary building units (SBUs). The resulting heterobimetallic framework ( 1 ) contains two distinct cluster constituents and bifunctional PTA linkers. Solid-state diffuse reflectance studies reveal that 1 is an optical semiconductor with a band-gap of 1.59 eV. Framework-modified electrodes exhibit reversible redox behavior in the solid state arising from the Co6S8 superatoms, which remain intact during framework synthesis.  相似文献   
13.
14.
15.
Differential ion-pair production cross sections for Ar*—I2 collisions at center of mass energies of 25–133 eV are quite similar to analogous alkali—I2 results despite the addition of competing channels (Penning ionization and excitation transfer) and possible multiple electronic surface crossings.  相似文献   
16.
A comparison of quantitative surface analyses of Fe? Ni alloy thin films by various methods has been proposed as a pilot study by the Surface Analysis Working Group of the Consultative Committee for Amount of Substance (CCQM). To test the suitability of Fe? Ni for this purpose, alloy films with different compositions were grown on Si(100) wafers by ion‐beam sputter deposition and the compositions were certified by an isotope dilution method using inductively coupled plasma‐mass spectrometry. The alloy compositions measured with X‐ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) using sensitivity factors determined from pure Fe and Ni metal films agreed with the certified mean values to better than 2%. The alloy compositions quantified by secondary ion mass spectrometry (SIMS) with a C60 ion source agreed to better than 4% with the certified compositions if one of the alloys was used to establish the relative sensitivity factors (RSFs). These results indicate that the quantification of the Fe? Ni alloy is a good method for a CCQM pilot study because matrix effects and ion‐sputtering effects are small for these analytical methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
17.
A method to increase useful yields of organic molecules is investigated by cluster secondary ion mass spectrometry (SIMS). Glycerol drops were deposited onto various inkjet‐printed arrays and the organic molecules in the film were rapidly incorporated into the drop. The resulting glycerol/analyte drops were then probed with fullerene primary ions under dynamic SIMS conditions. High primary ion beam currents were shown to aid in the mixing of the glycerol drop, thus replenishing the probed area and sustaining high secondary ion yields. Integrated secondary ion signals for tetrabutylammonium iodide and cocaine in the glycerol drops were enhanced by more than a factor of 100 compared with an analogous area on the surface, and a factor of 1000 over the lifetime of the glycerol drop. Once the analyte of interest is incorporated into the glycerol microdrop, the solution chemistry can be tailored for enhanced secondary ion yields, with examples shown for cyclotrimethylenetrinitramine (RDX) chloride adduct formation. In addition, depositing localized glycerol drops may enhance analyte secondary ion count rates to high enough levels to allow for site‐specific chemical maps of molecules in complex matrices such as biological tissues. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   
18.
Long-term (greater than 5 year exposures), low-temperature (as low as 37 °C) accelerated oven aging results were obtained for Nylon 6.6 fibers under thermo-oxidative conditions (air aging with an oxygen partial pressure of 13.2 cmHg in Albuquerque). To assess the importance of humidity on aging, experiments were also conducted under a combination of 100% RH plus 13.2 cmHg of oxygen partial pressure at temperatures ranging from 138 °C to 64 °C plus an additional experiment at 70% RH and 80 °C. The low-temperature tensile strength results showed that the Arrhenius activation energy under the pure oxidative degradation conditions dropped from ∼96 kJ/mol above ∼100 °C-∼30 kJ/mol below this temperature, indicative of a transition in the oxidative chemistry at low temperatures. Earlier work by our group on the same material concluded that hydrolytic degradation effects dominated oxidation effects at higher aging temperatures. However, the current long-term, low-temperature comparisons lead to the conclusion that humidity is not an important aging factor below ∼50 °C. By extrapolating time-temperature superposed oxidative degradation data using the low-temperature activation energy, we obtain predictions at 21 °C. At this temperature, we estimate that a tensile strength loss of 50% takes on the order of 70 years. The 21 °C predictions are shown to be reasonably consistent with long-term (up to 38 year) ambient results on similar Nylon materials removed from field-aged parachutes. Although the estimated average exposure temperature varies from parachute to parachute, the highest average temperature is estimated to be on the order of 21 °C.  相似文献   
19.
Various polymers were irradiated with high energy ( keV) carbon and hydrogen ion beams obtained from a high intensity pulsed power source. Energy deposition was in the range of 0.1–5 J/cm2 during each pulse, and ion penetration was limited to a few microns. The rapid energy deposition (<500 ns) corresponded to a dose rate of approximately 1012 Gy/s and resulted in a considerable temperature rise in the surface material accompanied by the formation of gaseous radiolysis products in amounts as high as the volume of the surface layer in which they were formed. Analysis by scanning electron microscopy revealed that dramatic changes to the polymer surface had occurred in some (but not all) of the materials, which took the form of extensive porosity or roughening. © 1998 John Wiley & Sons, Ltd.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号