首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   2篇
化学   54篇
力学   4篇
数学   3篇
物理学   20篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
11.
Water quality, mineralization, and chemical composition, particularly pH and nitrogen compounds each, play a crucial role in plant development and growth. Treatment of water with non-equilibrium discharges results in the change of its properties and chemical composition, which in turn may affect plant growth process and subsequently agriculture produce quality. Both thermal and non-thermal discharges generated in air or in water produce a number of reactive neutral and charged species, electric fields, and ultraviolet radiation. Plasma treatment of water results in significant change of its properties like pH, oxidation–reduction potential (ORP), conductivity, and concentration of reactive oxygen and reactive nitrogen species (ROS and RNS). Here we report the results of an experimental study of the effect of water treated with different atmospheric plasmas on germination, growth rates, and overall nutritional value of various plants. In the study we have used three types of plasmas: thermal spark discharge, gliding arc discharge, and transferred arc discharge. It is shown that the effects of these plasmas on chemical composition of various types of water are qualitatively different. Non-thermal gliding arc discharge plasma results in lower (acidic) pH, and production of significant amount of oxidizing species (e.g. H2O2). Gliding arc discharge also causes significant acidification of water, but it is accompanied by production of reactive nitrogen species (NO, NO2? and NO3?). Spark discharge treatment results in neutral or higher (basic) pH depending on initial water composition, and production of RNS.  相似文献   
12.
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg−1] versus DLNs-based chemotherapy [0.75 mg kg−1]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.  相似文献   
13.
We present a novel approach for the determination of activation energy for the unimolecular dissociation of a large (>50 atoms) ion, based on measurement of the unimolecular dissociation rate constant as a function of continuous-wave CO(2) laser intensity. Following a short ( approximately 1 s) induction period, CO(2) laser irradiation produces an essentially blackbody internal energy distribution, whose 'temperature' varies inversely with laser intensity. The only currently available method for measuring such activation energies is blackbody infrared radiative dissociation (BIRD). Compared with BIRD, FRAGMENT: (a) eliminates the need to heat the surrounding ion trap and vacuum chamber to each of several temperatures (each requiring hours for temperature equilibration); (b) offers a three-fold wider range of effective blackbody temperature; and (c) extends the range of applications to include initially cold ions (e.g., gas-phase H/D exchange). Our FRAGMENT-determined activation energy for dissociation of protonated bradykinin, 1.2 +/- 0.1 eV, agrees within experimental error to the value, 1.3 +/- 0.1 eV, previously reported by Williams et al. from BIRD experiments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
14.
15.
16.
This study appraises the antioxidant and antimicrobial attributes of various solvent extracts (absolute methanol, aqueous methanol, absolute ethanol, aqueous ethanol, absolute acetone, aqueous acetone, and deionized water) from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Maximum extraction yield of antioxidant components from bark (16.31%), leaves (11.42%) and seeds (21.51%) of P. pinnata was obtained using aqueous methanol (20:80). Of the extracts tested, the bark extract, obtained with aqueous methanol, exhibited greater levels of total phenolics [6.94 g GAE/100 g dry weight (DW)], total flavonoids (3.44 g CE/100 g DW), inhibition of linoleic acid peroxidation (69.23%) and DPPH radical scavenging activity (IC(50) value, 3.21 μg/mL), followed by leaves and seeds extracts. Bark extract tested against a set of bacterial and fungal strains also revealed the strongest antimicrobial activity with the largest inhibition zone and lowest minimum inhibitory concentration (MIC). HPLC analysis of aqueous methanol extracts from bark, leaves and seeds indicated the presence of protocatechuic, ellagic, ferulic, gallic, gentisic, 4-hydroxybenzoic and 4-hydroxycinnamic acids in bark (1.50-6.70 mg/100 g DW); sorbic, ferulic, gallic, salicylic and p-coumaric acids in leaves (1.18-4.71 mg/100 g DW); vanillic, gallic and tannic acids in seeds (0.52-0.65 mg/100 g DW) as the main phenolic acids. The present investigation concludes that the tested parts of P. pinnata, in particular the bark, have strong potential for the isolation of antioxidant and antimicrobial agents for functional food and pharmaceutical uses.  相似文献   
17.
Relative permittivity measurements were made on binary mixtures of (1,2-butanediol + 2-ethyl-1-hexanol) and (1,2-butanediol + 1,4-dioxane) for various concentrations at T = (298.2, 308.2, and 318.2) K. The molecular dipole moments were determined using Guggenheim–Debye method in the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In addition, in order to predict the permittivity data of polar-apolar binary mixtures, five mixing rules were applied.  相似文献   
18.
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号