首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   10篇
  国内免费   2篇
化学   224篇
晶体学   2篇
力学   15篇
数学   19篇
物理学   66篇
  2024年   1篇
  2023年   3篇
  2022年   18篇
  2021年   23篇
  2020年   11篇
  2019年   13篇
  2018年   13篇
  2017年   21篇
  2016年   15篇
  2015年   13篇
  2014年   15篇
  2013年   8篇
  2012年   14篇
  2011年   23篇
  2010年   7篇
  2009年   16篇
  2008年   16篇
  2007年   13篇
  2006年   12篇
  2005年   17篇
  2004年   11篇
  2003年   11篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1973年   2篇
排序方式: 共有326条查询结果,搜索用时 46 毫秒
61.
The effect of thermal radiation on an unsteady boundary layer flow and heat transfer in a copper–water nanofluid over an exponentially shrinking porous sheet is investigated. With the use of suitable transformations, the governing equations are transformed into ordinary differential equations. Dual non-similarity solutions are obtained for certain values of some parameters. Owing to the presence of thermal radiation, the heat transfer rate is greatly enhanced, and the thermal boundary layer thickness decreases.  相似文献   
62.
This work presents a full-duplex and multifunction bidirectional transceiver for optical interconnect application. The transceiver utilizes a common limiting amplifier/gain stage, thus reducing total chip area and total power consumption. While providing a full-duplex bidirectional transmission with the aid of a hybrid circuit between the electrical input/output (I/O) and the optoelectronic signals from the transmitter and receiver circuits, it also allows for a half-duplex operation with the aid of a switch between the transimpedance amplifier signals and the transmitter electrical input from the I/O port. The multifunction bidirectional CMOS transceiver is designed in a 0.13 µm Si-CMOS technology, with power dissipation of 79 and 54.4 mW for the transmitter and receiver, respectively. It shows a 3-dB bandwidth of 5.58 and 5.69 GHz for the transmitter and the receiver respectively and with a 3-dB gain of 66.14 and 69.6 dB, in full-duplex mode. The transceiver operates up to 7 Gb/s in full-duplex mode.  相似文献   
63.
Stainless steel 306 is implanted with various doses of nitrogen ions using a 2?MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.  相似文献   
64.
65.
We examine a spiralling slender viscous jet emerging from a rapidly rotating orifice, extending Wallwork et al. [I.M. Wallwork, S.P. Decent, A.C. King, R.M.S.M. Schulkes, The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory, J. Fluid Mech. 459 (2002) 43–65] by incorporating viscosity. The effects of viscosity on the trajectory of the jet and its linear instability are determined using a mixture of computational and asymptotic methods, and verified using experiments. A non-monotonic relationship between break-up length and rotation rate is demonstrated with the trend varying with viscosity. The sizes of the droplets produced by this instability are determined by considering the most unstable wave mode. It is also found that there is a non-monotonic relationship between droplet size and viscosity. Satellite droplet formation is also considered by analysing very short wavelength modes. The effects of long wavelength modes are examined, and a wave which propagates down the trajectory of the jet is identified for the highly viscous case. A comparison between theoretical and experimental results is made, with favourable agreement. In particular, a quantitative comparison is made between droplet sizes predicted from the theory with experimental observations, with encouraging agreement obtained. Four different types of break-up are identified in our experiments. The experimentally observed break-up mechanisms are discussed in light of our theory.  相似文献   
66.
The predicted structures and electronic properties of CeO(2) and Ce(2)O(3) have been studied using conventional and hybrid density functional theory. The lattice constant and bulk modulus for CeO(2) from local (LSDA) functionals are in good agreement with experiment, while the lattice parameter from a generalized gradient approximation (GGA) is too long. This situation is reversed for Ce(2)O(3), where the LSDA lattice constant is much too short, while the GGA result is in reasonable agreement with experiment. Significantly, the screened hybrid HSE functional gives excellent agreement with experimental lattice constants for both CeO(2) and Ce(2)O(3). All methods give insulating ground states for CeO(2) with gaps for the 4f band lying between 1.7 eV (LSDA) and 3.3 eV (HSE) and 6-8 eV for the conduction band. For Ce(2)O(3) the local and GGA functionals predict a semimetallic ground state with small (0-0.3 eV) band gap but weak ferromagnetic coupling between the Ce(+3) centers. By contrast, the HSE functional gives an insulating ground state with a band gap of 3.2 eV and antiferromagnetic coupling. Overall, the hybrid HSE functional gives a consistent picture of both the structural and electronic properties of CeO(2) and Ce(2)O(3) while treating the 4f band consistently in both oxides.  相似文献   
67.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   
68.
Well-crystallized hydrogenated carbon nitride thin films have been prepared by microwave plasma enhanced chemical vapor deposition (MWPECVD). 1H-1,2,3-triazole+N2 and Si (1 0 0) were used as precursor and substrate, respectively. Substrate temperature during the deposition was recorded to be 850 °C. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photo-electron spectroscopy (XPS) analyses. The plasma compositions were checked by optical emission spectroscopy (OES). XRD observation strongly suggests that the films contain polycrystalline carbon nitride with graphitic structure of (1 0 0), (0 0 2), (2 0 0) and (0 0 4). XPS peak quantification reveals that the atomic ratio of the materials C:N:O:Si is 32:41:18:9. X-ray photo-electron peak deconvolution shows that the most dominant peak of C (1s) and N (1s) narrow scans correspond to sp2 hybrid structure of C3N4. These observations indicate that 1H-1,2,3-triazole favors the formation of hydrogenated carbon nitride with graphitic phase by CVD method and thus is in good agreement with XRD results. SEM of surface and OES of plasma also support the formation of polycrystalline carbon nitride films from 1H-1,2,3-triazole+N2 by CVD.  相似文献   
69.
This paper investigates combined heat and mass transfer by mixed magneto-convective flow of an electrically conducting flow along a moving radiating vertical flat plate with hydrodynamic slip and thermal convective boundary conditions. The governing transport equations are converted into a system of coupled nonlinear ordinary differential equations with prescribed boundary conditions using similarity variables developed by Lie group theory. The transformed nondimensional boundary value problem is then solved numerically with MAPLE13 quadrature. Excellent correlation with previous nonmagnetic, no-slip studies is achieved. Surface shear stress function and local Nusselt number (heat transfer gradient at the wall) are increased with Richardson number, whereas local Sherwood number is found to initially decrease then subsequently increase. The “thermally thick” scenario (Biot number > 0.1) is investigated and increasing Biot number is observed to enhance shear stress function (skin friction), local Nusselt number, and local Sherwood number. Increasing thermal radiation flux increases thermal boundary layer thickness as does increasing the magnetic field effect. Increasing hydrodynamic slip parameter reduces skin friction but enhances local Nusselt and Sherwood numbers. The study has applications in high-temperature polymeric synthesis and magnetic field flow control.  相似文献   
70.
Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio total energy calculations within the modified Becke-Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125-0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAIGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号