首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
化学   68篇
晶体学   1篇
数学   3篇
物理学   14篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1983年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
Random dynamics of the Morris-Lecar neural model   总被引:1,自引:0,他引:1  
Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris-Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris-Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris-Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place. Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris-Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris-Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.  相似文献   
2.
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells.  相似文献   
3.
Synthesis of novel hybrid derivatives of two known scaffolds, pyrrolidine-2-one and piperazine, is described. Initially, the Ugi reaction of phenylglyoxal, aromatic amines, coumarin-3-carboxylic acid and isocyanides in methanol resulted in the formation of dihydrochromeno[3,4-c]pyrrole-3,4-diones. The obtained products were then treated with N-alkylpiperazines in dichloromethane to afford the novel N-substituted pyrrolidine-2-one containing piperazine derivatives in satisfactory yields. The proof of the structures was carried out by means of spectroscopic information and X-ray crystallography.  相似文献   
4.
5.
Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.  相似文献   
6.
Alanine is used as a transfer standard dosimeter for gamma ray and electron beam calibration. An important factor affecting its dosimetric response is humidity which can lead to errors in absorbed dose calculations. Ab initio molecular dynamics calculations were performed to determine the environmental effects on the electron paramagnetic resonance (EPR) parameters of L-α-alanine radicals in acidic and alkaline solutions. A new result, not dissimilar to the closed-shell amino acid molecule alanine, is that the non-zwitterionic form of the alanine radical is the stable form in the gas phase while the zwitterionic neutral alanine radical is not a stable structure in the gas phase. Geometric and EPR parameters of radicals in both gas and solution phases are found to be dependent on hydrogen bonding of water molecules with the polar groups and on dynamic solvation. Calculations on the optimized free radicals in the gas phase revealed that for the neutral radical, hydrogen bonding to water molecules drives a decrease in the magnitudes of g-tensor components g xx and g yy without affecting neither g zz component nor the hyperfine coupling constants (HFCCs). The transfer from the gas to solution phase of the alanine radical anion is accompanied with an increase in the spin density on the carboxylic group's oxygen atoms. However, for the neutral radical, this transfer from gas to solution phase is accompanied with the decrease in the spin density on oxygen atoms. Calculated isotropic HFCCs and g-tensor of all radicals are in good agreement with experiment in both acidic and alkaline solutions.  相似文献   
7.
A microfluidic dielectrophoresis platform consisting of curved microelectrodes was developed and integrated with a Raman spectroscopy system. The electrodes were patterned on a quartz substrate, which has insignificant Raman response, and integrated with a microfluidic channel that was imprinted in poly-dimethylsiloxane (PDMS). We will show that this novel integrated system can be efficiently used for the determination of suspended particle types and the direct mapping of their spatial concentrations. We will also illustrate the system's unique advantages over conventional optical systems. Nanoparticles of tungsten trioxide (WO(3)) and polystyrene were used in the investigations, as they are Raman active and can be homogeneously suspended in water.  相似文献   
8.
Four‐component reaction of aminodiazines (2‐aminopyrimidine and 2‐aminopyrazine), glyoxal, formaldehyde, and methanol yields trans‐4,5‐dimetoxy‐1,3‐bis(2‐pyrimidinyl)imidazolidine (5a) and trans‐4,5‐dimetoxy‐1,3‐bis(2‐pyrazinyl)imidazolidine (5b), respectively. Changing methanol to acetonitrile leads to the formation of the corresponding 1,3‐bis(2‐pyrimidinyl) and‐1,3‐bis(2‐pyrazinyl)‐ derivatives of trans‐4,5‐dihydroxyimidazolidine (6). Details of the proposed mechanism are discussed.  相似文献   
9.
This paper presents the development and experimental analysis of a dielectrophoresis (DEP) system, which is used for the manipulation and separation of microparticles in liquid flow. The system is composed of arrays of microelectrodes integrated to a microchannel. Novel curved microelectrodes are symmetrically placed with respect to the centre of the microchannel with a minimum gap of 40 μm. Computational fluid dynamics method is utilised to characterise the DEP field and predict the dynamics of particles. The performance of the system is assessed with microspheres of 1, 5 and 12 μm diameters. When a high‐frequency potential is applied to microelectrodes a spatially varying electric field is induced in the microchannel, which creates the DEP force. Negative‐DEP behaviour is observed with particles being repelled from the microelectrodes. The particles of different dimensions experience different DEP forces and thus settle to separate equilibrium zones across the microchannel. Experiments demonstrate the capability of the system as a field flow fraction tool for sorting microparticles according to their dimensions and dielectric properties.  相似文献   
10.
Wound closure and healing have been a problem that humans have faced since the ancient eras. An appropriate tissue connector must hold the edges of injured tissues close together to support healing and also prevent the leakage of biological fluids when resisting against the tensile forces. Even though clinical usage of mechanical methods is convenient for wound closure, their application has some limitations and drawbacks such as being painful for patients and hard to apply for surgeons when the injured site is not in touch. Furthermore, they do not have desirable cosmetic results. To solve these problems, closing the wounds with sticky materials has been introduced to prevent bleeding and induce the wound healing process. To this regard, many types of surgical adhesives including tissue adhesives have been developed to be a suitable alternative for sutures and staples. There is also a new approach which aims at producing bioadhesives by mimicking the nature along with applying nanotechnology methods. Today, many studies have been done to develop new adhesives inspired by nature. We have attempted to introduce the fundamentals of wound healing along with the different types of bioadhesives, their properties, and clinical applications in a simple and illustrated comprehensive way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号