首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   1篇
化学   175篇
晶体学   1篇
力学   1篇
数学   1篇
物理学   44篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   20篇
  1967年   99篇
  1966年   8篇
  1963年   1篇
  1962年   1篇
  1920年   2篇
  1912年   1篇
  1909年   2篇
  1893年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
31.
    
Ohne Zusammenfassung  相似文献   
32.
33.
34.
35.
36.
The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered.  相似文献   
37.
In the present work we investigate the hydrogen sorption mechanism in a MgH(2)/Nb(2)O(5) composite and analyze why Nb(2)O(5) could strongly improve hydrogen sorption kinetics in magnesium. Hereby we make use of the fact that Nb(2)O(5) nanoparticles are able to reduce the milling time significantly with the achievement of excellent sorption kinetics, and can so exclude effects occurring at long-term milling that make difficult the study of the mechanism. On the basis of extensive chemical, crystalline, and microstructural characterization of the MgH(2)/Nb(2)O(5) nanopowder system, a "pathway model" is proposed, which explains the kinetic hydrogen sorption improvement by a formation of pathways of niobium oxide species with lower oxidation state that facilitate the hydrogen transport into the sample. This mechanism is shown to be supported by additional oxidation experiments, which indicate increased oxygen diffusion through these pathways.  相似文献   
38.
Nonlinear photoelectron emission from metallic nanotips is explored in the strong-field regime. The passage between the multiphoton and the optical field emission regimes is clearly identified. The experimental observations are in agreement with a quantum mechanical strong-field model.  相似文献   
39.
Using an in situ combination of tensile tests and x-ray diffraction, we have determined the mechanical properties of both the crystalline and the disordered phase of the biological nanocomposite silk by adapting a model from linear viscoelastic theory to the semicrystalline morphology of silk. We observe a strong interplay between morphology and mechanical properties. Silk's high extensibility results principally from the disordered phase; however, the crystals are also elastically deformed.  相似文献   
40.
A time‐resolved intensified charge coupled device‐based Raman microspectrometer system dedicated to the study of solid samples is described, offering good optical, temporal and spatial resolution. The advantages of this approach are demonstrated on Al2O3:Cr3+, obtaining for the first time the temporal evolution of the excited state transition Ē → 2Ā. Moreover, the time dependence of the luminescence due to the chromium ion was also determined by the same Raman device. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号