首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   13篇
  国内免费   2篇
化学   319篇
晶体学   1篇
力学   11篇
数学   37篇
物理学   141篇
  2020年   4篇
  2019年   9篇
  2016年   9篇
  2015年   8篇
  2013年   19篇
  2012年   12篇
  2011年   26篇
  2010年   14篇
  2009年   6篇
  2008年   19篇
  2007年   13篇
  2006年   26篇
  2005年   17篇
  2004年   10篇
  2003年   9篇
  2002年   14篇
  2000年   4篇
  1999年   5篇
  1997年   4篇
  1996年   10篇
  1995年   7篇
  1994年   12篇
  1993年   19篇
  1992年   11篇
  1991年   14篇
  1990年   18篇
  1989年   17篇
  1988年   7篇
  1987年   6篇
  1986年   11篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   11篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   10篇
  1972年   7篇
  1970年   5篇
  1968年   3篇
  1967年   3篇
  1966年   3篇
  1933年   5篇
  1931年   4篇
  1867年   3篇
排序方式: 共有509条查询结果,搜索用时 0 毫秒
81.
Self-assembly under hydrothermal conditions has been employed to synthesize several novel uranium-containing polymeric materials in the pyridinedicarboxylic acid (pydc) system. Uranium containing coordination polymers were synthesized utilizing 2,3-pyridinedicarboxylic acid (2,3-pydc), 2,4-pyridinedicarboxylic acid (2,4-pydc) and 2,6-pyridinedicarboxylic acid (2,6-pydc) as the organic linker. Furthermore, several bimetallic compounds were also synthesized, U-M-2,6-pydc (M = Cu, Ag, Pb). A new secondary building unit for uranium(vi) compounds has also been realized in compound 4 [(UO(2))(2)(C(7)H(3)NO(4))(O)(H(2)O)] through tetramer building units edge shared to form one-dimensional chains. Presented herein will be the syntheses, crystal structures and fluorescent properties of these uranium-containing compounds.  相似文献   
82.
We consider a modification of the three-dimensional Navier–Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e|k|/kd{{{\rm e}^{|k|/k_{\rm d}}}} at high wavenumbers |k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-C(k/kd) ln(|k|/kd){{{\rm e}^{-C(k/k_{\rm d})\,{\rm ln}(|k|/k_{\rm d})}}} for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C * = 1/ ln 2. The same behavior with a universal constant C * is conjectured for the Navier–Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier–Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.  相似文献   
83.
84.
85.
A methodology has been developed to chromatographically quantify indium in polymetallic (bio)hydrometallurgical processing solutions using the Dionex IonPac CS5A column and pyridine‐2,6‐dicarboxylic acid eluent. Cu(II) and In(III) could be separated by elevating the column temperature to 45°C. The comparatively low stability constant of the In‐eluent complex (log K2 = 3.8) required typical leaching samples to be diluted in the eluent rather than acid or water to overcome ligand competition between components of the sample solution and the eluent. The methodology was applied to leachates from (bio)hydrometallurgical processing of oxidic flue dust residues and sulfidic zinc ores, where both are promising candidates for the recovery of indium from low grade ores and metallurgical wastes. Indium, ferrous iron, ferric iron, copper, zinc, nickel, and manganese concentrations could be simultaneously quantified. The method was found suitable for samples containing at least 0.25 mg/L indium and an iron to indium ratio of up to 100:1.  相似文献   
86.
87.
We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax=415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.  相似文献   
88.
The study of the adsorption of proteins on nanostructured surfaces is of fundamental importance to understand and control cell-surface interactions and, notably, cell adhesion and proliferation; it can also play a strategic role in the design and fabrication of nanostructured devices for postgenomic and proteomic applications. We have recently demonstrated that cluster-assembled nanostructured TiO x films produced by supersonic cluster beam deposition possess excellent biocompatibility and that these films can be functionalized with streptavidin, allowing the immobilization of biotinylated retroviral particles and the realization of living-cell microarrays for phenotype screening. Here we present a multitechnique investigation of the adsorption mechanisms of streptavidin on cluster-assembled TiO x films. We show that this nanostructured surface provides an optimal balance between adsorption efficacy and protein functionality. By using low-resolution protein arrays, we demonstrate that a layer of adsorbed streptavidin can be stably maintained on a cluster-assembled TiO x surface under cell culture conditions and that streptavidin retains its biological activity in the adsorbed layer. The adsorption mechanisms are investigated by atomic force microscopy in force spectroscopy mode and by valence-band photoemission spectroscopy, highlighting the potential role of the interaction of the exposed carboxyl groups on streptavidin with the titanium atoms of the nanostructured surface.  相似文献   
89.
A new antibacterial coating made of poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films and liposome aggregates loaded with silver ions was designed. Liposomes filled with an AgNO 3 solution were first aggregated by the addition of PLL in solution. The obtained micrometer-sized aggregates were then deposited on a PLL/HA multilayer film, playing the role of a spacer with the support. Finally, HA/PLL/HA capping layers were deposited on top of the architecture to form a composite AgNO 3 coating. Release of encapsulated AgNO 3 from this composite coating was followed and triggered upon temperature increase over the transition temperature of vesicles, found to be equal to 34 degrees C. After determination of the minimal inhibitory concentration (MIC) of AgNO 3 in solution, the antibacterial activity of the AgNO 3 coating was investigated against Escherichia coli. A 4-log reduction in the number of viable E. coli cells was observed after contact for 120 min with a 120 ng/cm (2) AgNO 3 coating. In comparison, no bactericidal activity was found for PLL/HA films previously dipped in an AgNO 3 solution and for PLL/HA films with liposome aggregates containing no AgNO 3 solution. The strong bactericidal effect could be linked to the diffusion of silver ions out of the AgNO 3 coating, leading to an important bactericidal concentration close to the membrane of the bacteria. A simple method to prepare antibacterial coatings loaded with a high and controlled amount of AgNO 3 is therefore proposed. This procedure is far superior to that soaking AgNO 3 or Ag nanoparticles into a coating. In principle, other small bactericidal chemicals like antibiotics could be encapsulated by this method. This study opens a new route to modify surfaces with small solutes that are not permeating phospholipid membranes below the phase transition temperature.  相似文献   
90.
The hydrothermal synthesis and structures of [UO2(PDA)] (1) and [Th(PDA)2(H2O)2].H2O (2) (PDA = 1,10-phenanthroline-2,9-dicarboxylic acid) are reported. 1 is orthorhombic, Pnma, a = 11.1318(7) A, b = 6.6926(4) A, c = 17.3114(12) A, V = 1289.71(14), Z = 4, R = 0.0313; 2 is triclinic, P1, a = 7.6190(15) A, b = 10.423(2) A, c = 17.367(4) A, alpha = 94.93(3) degrees , beta = 97.57(3) degrees , gamma = 109.26(3) degrees , V = 1278.3(4) A (3), Z = 2, R = 0.0654. The local geometry around the U in 1 is a pentagonal bipyramid with the two uranyl oxygens occupying the apical positions. The donor atoms in the plane comprise the four donor atoms from the PDA ligand (average U-N = 2.558 and U-O = 2.351 A) with the fifth site occupied by a bridging carboxylate oxygen from a neighboring UO2/PDA individual. The PDA ligand in 1 is exactly planar, with the U lying in the plane of the ligand. The latter planarity, as well as the near-ideal U-O and U-N bond lengths, and O-U-N and N-U-N bond angles within the chelate rings of 1 suggest that PDA binds to the uranyl cation in a low-strain manner. In 2, there are two PDA ligands bound to the Th (average Th-N = 2.694 and Th-O = 2.430 A) as well as two water molecules (Th-O = 2.473 and 2.532 A) to give the Th a coordination number of 10. The PDA ligands in 2 are bowed, with the Th lying out of the plane of the ligand. Molecular mechanics calculations suggest that the distortion of the PDA ligands in 2 arises because of steric crowding. UV spectroscopic studies of solutions containing 1:1 ratios of PDA and Th(4+) in 0.1 M NaClO4 at 25 degrees C indicate that log K1 for the Th(4+)/PDA complex is 25.7(9). The latter result confirms the previous prediction that complexes of PDA with metal ions of higher charge and an ionic radius of about 1.0 A such as Th(IV) would have remarkably high log K1 values with PDA. The origins of this very high stability are discussed in terms of a synergy between the pyridyl and the carboxylate donor groups of PDA. Metal ions of high charge normally bond poorly with pyridyl donors in aqueous solution because such metal ions require donor groups that are able to disperse charge to the solvent via hydrogen-bonding, which pyridyl groups are unable to do. In PDA, the carboxylates fulfill this need and so enable the high donor strength of the pyridyl groups of PDA to become apparent in the high log K1 for Th(IV) with PDA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号