首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   8篇
  国内免费   1篇
化学   94篇
力学   3篇
数学   24篇
物理学   38篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   10篇
  2005年   7篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  1998年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
  1954年   2篇
  1941年   1篇
  1920年   2篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
31.
32.
33.
We show that in atomic gases cooperative effects like superradiance and subradiance lead to a potential between two atoms that decays like 1/r. In the case of superradiance, this potential is attractive for close enough atoms and can be interpreted as a coherent mesoscopic effect. The contribution of superradiant pairs to multiple scattering properties of a dilute gas, such as photon elastic mean free path and group velocity, is significantly different from that of independent atoms. We discuss the conditions under which these effects may be observed and compare our results to recent experiments on photon transport in cold atomic gases.  相似文献   
34.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   
35.
36.
A methodology has been developed to chromatographically quantify indium in polymetallic (bio)hydrometallurgical processing solutions using the Dionex IonPac CS5A column and pyridine‐2,6‐dicarboxylic acid eluent. Cu(II) and In(III) could be separated by elevating the column temperature to 45°C. The comparatively low stability constant of the In‐eluent complex (log K2 = 3.8) required typical leaching samples to be diluted in the eluent rather than acid or water to overcome ligand competition between components of the sample solution and the eluent. The methodology was applied to leachates from (bio)hydrometallurgical processing of oxidic flue dust residues and sulfidic zinc ores, where both are promising candidates for the recovery of indium from low grade ores and metallurgical wastes. Indium, ferrous iron, ferric iron, copper, zinc, nickel, and manganese concentrations could be simultaneously quantified. The method was found suitable for samples containing at least 0.25 mg/L indium and an iron to indium ratio of up to 100:1.  相似文献   
37.
The study of the adsorption of proteins on nanostructured surfaces is of fundamental importance to understand and control cell-surface interactions and, notably, cell adhesion and proliferation; it can also play a strategic role in the design and fabrication of nanostructured devices for postgenomic and proteomic applications. We have recently demonstrated that cluster-assembled nanostructured TiO x films produced by supersonic cluster beam deposition possess excellent biocompatibility and that these films can be functionalized with streptavidin, allowing the immobilization of biotinylated retroviral particles and the realization of living-cell microarrays for phenotype screening. Here we present a multitechnique investigation of the adsorption mechanisms of streptavidin on cluster-assembled TiO x films. We show that this nanostructured surface provides an optimal balance between adsorption efficacy and protein functionality. By using low-resolution protein arrays, we demonstrate that a layer of adsorbed streptavidin can be stably maintained on a cluster-assembled TiO x surface under cell culture conditions and that streptavidin retains its biological activity in the adsorbed layer. The adsorption mechanisms are investigated by atomic force microscopy in force spectroscopy mode and by valence-band photoemission spectroscopy, highlighting the potential role of the interaction of the exposed carboxyl groups on streptavidin with the titanium atoms of the nanostructured surface.  相似文献   
38.
Density functional theory (DFT) and time‐dependent DFT calculations are presented for the dicopper thiolate complex Cu2(NGuaS)2Cl2 [NGuaS=2‐(1,1,3,3‐tetramethylguanidino) benzenethiolate] with a special focus on the bonding mechanism of the Cu2S2Cl2 core and the spectroscopic response. This complex is relevant for the understanding of dicopper redox centers, for example, the CuA center. Its UV/Vis absorption is theoretically studied and found to be similar to other structural CuA models. The spectrum can be roughly divided in the known regions of metal d‐d absorptions and metal to ligand charge transfer regions. Nevertheless the chloride ions play an important role as electron donors, with the thiolate groups as electron acceptors. The bonding mechanism is dissected by means of charge decomposition analysis which reveals the large covalency of the Cu2S2 diamond core mediated between Cu and S‐S π and π* orbitals forming Cu‐S σ bonds. Measured resonant Raman spectra are shown for 360‐ and 720‐nm excitation wavelength and interpreted using the calculated vibrational eigenmodes and frequencies. The calculations help to rationalize the varying resonant behavior at different optical excitations. Especially the phenylene rings are only resonant for 720 nm. © 2016 Wiley Periodicals, Inc.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号