首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   25篇
  国内免费   1篇
化学   669篇
晶体学   2篇
力学   1篇
数学   43篇
物理学   65篇
  2021年   10篇
  2020年   14篇
  2019年   13篇
  2018年   4篇
  2017年   4篇
  2016年   21篇
  2015年   19篇
  2014年   18篇
  2013年   36篇
  2012年   32篇
  2011年   48篇
  2010年   16篇
  2009年   27篇
  2008年   43篇
  2007年   34篇
  2006年   35篇
  2005年   28篇
  2004年   19篇
  2003年   22篇
  2002年   18篇
  2001年   16篇
  2000年   15篇
  1999年   13篇
  1998年   10篇
  1997年   14篇
  1996年   8篇
  1995年   20篇
  1994年   15篇
  1993年   13篇
  1992年   24篇
  1991年   16篇
  1990年   7篇
  1989年   18篇
  1988年   10篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1982年   9篇
  1981年   10篇
  1980年   7篇
  1978年   12篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
排序方式: 共有780条查询结果,搜索用时 0 毫秒
101.
102.
The electronic structures and bonding patterns for a new class of radical cations, [HnE-H-H-EHn]+ (EHn=element hydride, E=element of Groups 15-18), have been investigated by applying quantum-chemical methods. All structures investigated give rise to symmetric potential energy minimum structures. We envisage clear periodic trends. The H--H bond length is shorter for elements toward the bottom of the periodic table of elements, and a short H--H bond corresponds to accumulation of electron density in the central H--H region. All [HnE-H-H-EHn]+ of Groups 15-17 are thermodynamically unstable towards loss of either H2 or H. The barriers for these dissociations are rather low. The Group 18 congeners, except E=Xe, appear to be global minima of the respective potential energy surfaces. The findings are discussed in terms of H2 bond activation, and a general mechanistic scheme for the standard reduction process 2H+ + 2e(-) --> H2 is given. Finally, it is proposed that some of the symmetric radical cations are likely to be observed in mass spectrometric or matrix isolation experiments.  相似文献   
103.
The reaction of pyridine with ditechnetium decacarbonyl [Tc2(CO)10] (1) leads to a novel ortho-pyridyl-ditechnetium hydrido complex, [Tc2(mu-H)(mu-NC5H4)(NC5H5)2(CO)6] (2) and its precursor [Tc2(mu-CO)2(NC5H5)2(CO)6] (3). At ambient temperature 1 was found to react slowly with pyridine to afford the substitution product 3 after 120 h. However, heating the reaction mixture to reflux exclusively leads to the pyridine-ortho-metalated complex 2 in only 30 min. Similarly, complex 3 can be converted completely into 2 upon heating in pyridine for 30 min. Both compounds 2 and 3 were characterized by NMR spectroscopy and X-ray analysis. Both compounds 2 and 3 show a complex dynamic behavior in solution that was investigated by one-dimensional and two-dimensional NMR spectroscopy. Both compounds 2 and 3 show isomerization in solution according to the relative position of the non-bridging pyridine ligands. For 2 the existence of three isomers was shown at equilibrium conditions, 2a (56%) with trans-diaxial, 2b (38%) with cis-diaxial, and 2c (6%) with axial-equatorial arrangement of the non-bridging pyridines. For 3 an equilibrium was detected between two isomers, 3a (67%) with a cis-diaxial and 3b (33%) with a trans-diaxial arrangement of the pyridines.  相似文献   
104.
In the ongoing revision of the classification of the finite simple groups there is a subdivision into two classes of groups, which reflects whether semisimple elements or unipotent elements are the primary focus of the investigation. While semisimple methods naturally lead to the definition of groups of even type, unipotent methods, notably the amalgam method, naturally lead to groups of even characteristic. This paper clarifies the relationship between the two definitions and thus makes the amalgam method available for use in the classification of groups of even type.  相似文献   
105.
This paper discusses recent progress that has been made in the understanding of the electronic structure and bonding situation of carbon monoxide which was analyzed using modern quantum chemical methods. The new results are compared with standard models of chemical bonding. The electronic charge distribution and the dipole moment, the nature of the HOMO and the bond dissociation energy are discussed in detail.  相似文献   
106.
The electronic structure and bonding situation in 21 metallabenzenes (metal=Os, Ru, Ir, Rh, Pt, and Pd) were investigated at the DFT level (BP86/TZ2P) by using an energy decomposition analysis (EDA) of the interaction energy between various fragments. The aim of the work is to estimate the strength of the pi bonding and the aromatic character of the metallacyclic compounds. Analysis of the electronic structure shows that the metallacyclic moiety has five occupied pi orbitals, two with b1 symmetry and three with a2 symmetry, which describe the pi-bonding interactions. The metallabenzenes are thus 10 pi-electron systems. This holds for 16-electron and for 18-electron complexes. The pi bonding in the metallabenzenes results mainly from the b1 contribution, but the a2 contribution is not negligible. Comparison of the pi-bonding strength in the metallacyclic compounds with acylic reference molecules indicates that metallabenzenes should be considered as aromatic compounds whose extra stabilization due to aromatic conjugation is weaker than in benzene. The calculated aromatic stabilization energies (ASEs) are between 8.7 kcal mol(-1) for 13 and 37.6 kcal mol(-1) for 16 which is nearly as aromatic as benzene (ASE=42.5 kcal mol(-1)). The classical metallabenzene model compounds 1 and 4 exhibit intermediate aromaticity with ASE values of 33.4 and 17.6 kcal mol(-1). The greater stability of the 5d complexes compared with the 4d species appears not to be related to the strength of pi conjugation. From the data reported here there is no apparent trend or pattern which indicates a correlation between aromatic stabilization and particular ligands, metals, coordination numbers or charge. The lower metal-C5H5 binding energy of the 4d complexes correlates rather with weaker sigma-orbital interactions.  相似文献   
107.
Derivatives of the hitherto unknown ring system, pyrazolo[4′,3′:5,6]pyrano[2,3‐b]quinoxalin‐4(1H)‐one, are synthesized in one step from the corresponding 1‐substuituted or 1,3‐disubstituted 2‐pyrazolin‐5‐ones and 3‐chloroquinoxaline‐2‐carbonyl chloride using calcium hydroxide in boiling 1,4‐dioxane. The parent system carrying no substituent in positions 1 and 3 is obtained upon treatment of the 1‐PMB (p‐methoxybenzyl) protected congener with trifluoroacetic acid. Detailed NMR spectroscopic investigations including unambiguous chemical shift assignments of all 1H, 13C, and 15N resonances of the obtained tetracycles are reported.  相似文献   
108.
The synthesis of coinage metal aluminyl complexes, featuring M–Al covalent bonds, is reported via a salt metathesis approach employing an anionic Al(i) (‘aluminyl’) nucleophile and group 11 electrophiles. This approach allows access to both bimetallic (1 : 1) systems of the type (tBu3P)MAl(NON) (M = Cu, Ag, Au; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) and a 2 : 1 di(aluminyl)cuprate system, K[Cu{Al(NON)}2]. The bimetallic complexes readily insert heteroallenes (CO2, carbodiimides) into the unsupported M–Al bonds to give systems containing a M(CE2)Al bridging unit (E = O, NR), with the μ-κ1(C):κ2(E,E′) mode of heteroallene binding being demonstrated crystallographically for carbodiimide insertion in the cases of all three metals, Cu, Ag and Au. The regiochemistry of these processes, leading to the formation of M–C bonds, is rationalized computationally, and is consistent with addition of CO2 across the M–Al covalent bond with the group 11 metal acting as the nucleophilic partner and Al as the electrophile. While the products of carbodiimide insertion are stable to further reaction, their CO2 analogues have the potential to react further, depending on the identity of the group 11 metal. (tBu3P)Au(CO)2Al(NON) is inert to further reaction, but its silver counterpart reacts slowly with CO2 to give the corresponding carbonate complex (and CO), and the copper system proceeds rapidly to the carbonate even at low temperatures. Experimental and quantum chemical investigations of the mechanism of the CO2 to CO/carbonate transformation are consistent with rate-determining extrusion of CO from the initially-formed M(CO)2Al fragment to give a bimetallic oxide that rapidly assimilates a second molecule of CO2. The calculated energetic barriers for the most feasible CO extrusion step (ΔG = 26.6, 33.1, 44.5 kcal mol−1 for M = Cu, Ag and Au, respectively) are consistent not only with the observed experimental labilities of the respective M(CO)2Al motifs, but also with the opposing trends in M–C (increasing) and M–O bond strengths (decreasing) on transitioning from Cu to Au.

The differential reactivity of copper, silver and gold aluminyl compounds towards CO2 and other heteroallenes are probed by experimental and quantum chemical methods.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号