首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47267篇
  免费   18140篇
  国内免费   63篇
化学   58253篇
晶体学   56篇
力学   2078篇
数学   3416篇
物理学   1667篇
  2024年   157篇
  2023年   4076篇
  2022年   1434篇
  2021年   2489篇
  2020年   4631篇
  2019年   2326篇
  2018年   2288篇
  2017年   611篇
  2016年   5617篇
  2015年   5554篇
  2014年   5000篇
  2013年   5273篇
  2012年   3315篇
  2011年   1174篇
  2010年   3479篇
  2009年   3425篇
  2008年   1146篇
  2007年   885篇
  2006年   258篇
  2005年   232篇
  2004年   203篇
  2003年   156篇
  1997年   167篇
  1996年   167篇
  1995年   213篇
  1994年   169篇
  1993年   288篇
  1992年   186篇
  1989年   159篇
  1988年   194篇
  1987年   187篇
  1986年   193篇
  1985年   220篇
  1984年   196篇
  1983年   181篇
  1982年   205篇
  1981年   228篇
  1980年   291篇
  1979年   239篇
  1978年   272篇
  1977年   377篇
  1976年   425篇
  1975年   497篇
  1974年   532篇
  1973年   338篇
  1972年   417篇
  1971年   395篇
  1970年   588篇
  1969年   438篇
  1968年   473篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
841.
The molecular understanding of the chemistry of 1,4‐β‐glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4‐β‐glycosidic bond and its chemical environment for the activation of 1,4‐β‐glucans toward acid‐catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6‐31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.  相似文献   
842.
Efficient separation of photogenerated electron–hole pairs is a crucial factor for high-performance photocatalysts. Effective electron–hole separation and migration could be achieved by heterojunctions with suitable band structures. Herein, a porous SrTiO3/SrSO4 heterojunction is prepared by a sol-gel method at room temperature followed by an annealing process. XRD characterization suggests high crystallinity of the heterostructure. A well-defined interface between the two phases is confirmed by high-resolution (HR)TEM. The photocatalytic H2 evolution productivity of the SrTiO3/SrSO4 heterojunction with Pt as co-catalyst reaches 396.82 μmol g−1 h−1, which is 16 times higher than that of SrTiO3/Pt. The boosted photocatalytic activity of SrTiO3/SrSO4/Pt can be ascribed to the presence of SrSO4, which promotes the transfer and migration of photogenerated carriers by forming the heterojunction and porous structure, which provides a large amount of active sites. This novel porous heterostructure brings new ideas for the development of high-efficiency photocatalysts for H2 release.  相似文献   
843.
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3N4) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.  相似文献   
844.
Naturally occurring indole‐3‐carbinol and 3,3‐diindolylmethane show bioactivity in a number of disparate disease areas, including cancer, prompting substantial synthetic analogue activity. We describe a new approach to highly functionalised derivatives that starts from allene gas and proceeds via the combination of a three‐component Pd0‐catalysed cascade with a one‐pot, three‐component carbophilic PtII cascade linked to a stereoselective acid‐catalysed Mannich–Michael reaction that generates complex cyclopropyl diindolylmethanes which show selective activity against prostate cancer cell lines.  相似文献   
845.
846.
847.
848.
Metal phosphates have been widely explored in lithium ion batteries and sodium ion batteries owing to high theoretical capacities, mild toxicity and low cost. However, their potassium ion battery applications are less reported due to the limited conductivity and the slow diffusion kinetics. Considering these drawbacks, novel structured M2P2O7/C (M=Fe, Co, Ni) nanoflake composites are prepared through an organic-phosphors precursor-assisted solvothermal method and a subsequent high temperature annealing process. The designed Co2P2O7/C composite exhibits the highest rate capacity with 502 mAh g−1 at 0.1 A g−1 and good cyclability for 900 cycles at 1 A g−1 and 2 A g−1 when compared with Ni and Fe based composites. The superior electrochemical performance can be attributed to their unique nanoparticle-assembled nanoflake structure, which can afford enough active sites for K+ intercalation. In addition, the robust pyrophosphate crystal structure and the in situ formed carbon composition also have positive effects on enhancing the long-term cycling performance and the electrode's conductivity. Finally, this organic-phosphors precursor induced simple approach can be applied for easy fabrication of other pyrophosphate/carbon hybrids as advanced electrodes.  相似文献   
849.
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.  相似文献   
850.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号