首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
化学   40篇
数学   3篇
物理学   8篇
  2022年   4篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1985年   1篇
  1885年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.  相似文献   
32.
Protonated and deprotonated adipic acids (PAA: HOOC? (CH2)4? COOH2+ and DAA: HOOC? (CH2)4? COO?) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H2O???H???OH2)+ Zundel‐like symmetric hydrogen bonding, whereas that of DAA has H3O+ Eigen‐like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel‐like ions for PAA and Eigen‐like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH???O short hydrogen‐bond stretching peaks are predicted in the range of 1000–1700 cm?1 in the Car–Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen‐bond peaks. The O? H? O stretching peaks in the range of 1800–2700 cm?1 become insignificant above around 150 K and are almost washed out at about 300 K.  相似文献   
33.
Linear optical coherence tomography (LOCT) systems are a simple and robust alternative to time-domain optical coherence tomography systems, but a detector with approximately 10(4) pixels is needed for an imaging depth of 2 mm. We present a new system for LOCT with a special mask attached to the image sensor. The mask essentially performs a downconversion of the spatial frequencies by multiplication with a second spatial frequency. This reduces the fringe frequency of the optical coherence tomography signal so that the signal can be sampled with fewer pixels.  相似文献   
34.
Optical coherence tomography (OCT) sensors traditionally use scanning optical delay lines with moving parts and a single detector. OCT systems with a linear detector array (linear OCT or L-OCT) are simple and robust, but a detector with approximately 10,000 pixels is needed for an imaging depth of 2mm, which is necessary for most biomedical applications. We present a new optical setup for L-OCT with an increased measurement range. An additional grating performs a reduction of the spatial frequencies of the fringe pattern on the detector without loss in the signal-to-noise ratio, so the signal can be sampled with a minimal number of pixels. The theory for this approach is addressed and the first measurements are presented.  相似文献   
35.
We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterotrimetallic trisporphyin complexes. The protocol encompasses synthesising the first aryl-based, trans-o-phenylene trisporphyrin starting from pyrrole and benzaldehyde with an overall yield of 3.6 %. It also allows investigating the respective cis-isomer as the first conformationally restricted planar-chiral trisporphyrin. The free-base ligand was used in subsequent metalation reactions to afford the corresponding homotrimetallic Mn(III)-, Fe(III)-, Ni(II)-, Cu(II)-, Zn(II)- and Pd(II) complexes – additionally, a small adaptation of the protocol resulted in the defined Ni(II)Fe(III)Ni(II) complex in a total yield of 2.3 %. By monitoring Ni(II) insertion into the empty trimeric ligands, we affirmed that the outer porphyrin rings are filled before the internal ring. The molecular species were characterised by 1H NMR, UV-Vis, photoluminescence, IR, MS, CID, and high-resolution IMS measurements.  相似文献   
36.
37.
38.
In spite of intense, recent research efforts, luminescent transition metal complexes with Earth-abundant metals are still very rare owing to the small ligand field splitting of 3d transition metal complexes and the resulting non-emissive low-energy metal-centered states. Low-energy excited states decay efficiently non-radiatively, so that near-infrared emissive transition metal complexes with 3d transition metals are even more challenging. We report that the heteroleptic pseudo-octahedral d2-vanadium(iii) complex VCl3(ddpd) (ddpd = N,N′-dimethyl-N,N′-dipyridine-2-yl-pyridine-2,6-diamine) shows near-infrared singlet → triplet spin–flip phosphorescence maxima at 1102, 1219 and 1256 nm with a lifetime of 0.5 μs at room temperature. Band splitting, ligand deuteration, excitation energy and temperature effects on the excited state dynamics will be discussed on slow and fast timescales using Raman, static and time-resolved photoluminescence, step-scan FTIR and fs-UV pump-vis probe spectroscopy as well as photolysis experiments in combination with static quantum chemical calculations. These results inform future design strategies for molecular materials of Earth-abundant metal ions exhibiting spin–flip luminescence and photoinduced metal–ligand bond homolysis.

Vanadium is an abundant and cheap metal but near-infrared luminescent vanadium complexes are extremely rare with largely unexplored photophysics and photochemistry. We delineate the photodynamics of VCl3(ddpd) to infer novel design strategies.  相似文献   
39.
We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2)2H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1M2dcpm2(HOx)]+ with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+ . These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2-tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+ but adopts a more flexible coordination to [AgAg]+ . Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature.  相似文献   
40.
The phenomenon of single molecule magnet (SMM) behavior of mixed valent Mn12 coordination clusters of general formula [MnIII8MnIV4O12(RCOO)16(H2O)4] had been exemplified by bulk samples of the archetypal [MnIII8MnIV4O12(CH3COO)16(H2O)4] (4) molecule, and the molecular origin of the observed magnetic behavior has found support from extensive studies on the Mn12 system within crystalline material or on molecules attached to a variety of surfaces. Here we report the magnetic signature of the isolated cationic species [Mn12O12(CH3COO)15(CH3CN)]+ (1) by gas phase X-ray Magnetic Circular Dichroism (XMCD) spectroscopy, and we find it closely resembling that of the corresponding bulk samples. Furthermore, we report broken symmetry DFT calculations of spin densities and single ion tensors of the isolated, optimized complexes [Mn12O12(CH3COO)15(CH3CN)]+ (1) , [Mn12O12(CH3COO)16] (2) , [Mn12O12(CH3COO)16(H2O)4] (3) , and the complex in bulk geometry [MnIII8MnIV4O12(CH3COO)16(H2O)4] (5) . The found magnetic fingerprints – experiment and theory alike – are of a remarkable robustness: The MnIV4 core bears almost no magnetic anisotropy while the surrounding MnIII8 ring is highly anisotropic. These signatures are truly intrinsic properties of the Mn12 core scaffold within all of these complexes and largely void of the environment. This likely holds irrespective of bulk packing effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号