首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2584篇
  免费   134篇
  国内免费   12篇
化学   1936篇
晶体学   20篇
力学   31篇
数学   379篇
物理学   364篇
  2023年   32篇
  2022年   33篇
  2021年   55篇
  2020年   79篇
  2019年   69篇
  2018年   29篇
  2017年   41篇
  2016年   74篇
  2015年   91篇
  2014年   77篇
  2013年   118篇
  2012年   92篇
  2011年   115篇
  2010年   75篇
  2009年   79篇
  2008年   120篇
  2007年   93篇
  2006年   112篇
  2005年   77篇
  2004年   60篇
  2003年   75篇
  2002年   72篇
  2001年   53篇
  2000年   41篇
  1999年   40篇
  1998年   40篇
  1997年   28篇
  1996年   34篇
  1995年   34篇
  1994年   47篇
  1993年   46篇
  1992年   55篇
  1991年   30篇
  1989年   28篇
  1988年   30篇
  1987年   37篇
  1986年   29篇
  1985年   31篇
  1984年   28篇
  1983年   33篇
  1982年   31篇
  1981年   24篇
  1980年   29篇
  1979年   25篇
  1978年   31篇
  1977年   30篇
  1975年   27篇
  1974年   31篇
  1973年   28篇
  1971年   23篇
排序方式: 共有2730条查询结果,搜索用时 78 毫秒
161.
Commercial LiAlH4 can be used in catalytic quantities in the hydrogenation of imines to amines with H2. Combined experimental and theoretical investigations give deeper insight in the mechanism and identifies the most likely catalytic cycle. Activity is lost when Li in LiAlH4 is exchanged for Na or K. Exchanging Al for B or Ga also led to dramatically reduced activities. This indicates a heterobimetallic mechanism in which cooperation between Li and Al is crucial. Potential intermediates on the catalytic pathway have been isolated from reactions of MAlH4 (M=Li, Na, K) and different imines. Depending on the imine, double, triple or quadruple imine insertion has been observed. Prolonged reaction of LiAlH4 with PhC(H)=NtBu led to a side-reaction and gave the double insertion product LiAlH2[N]2 ([N]=N(tBu)CH2Ph) which at higher temperature reacts further by ortho-metallation of the Ph ring. A DFT study led to a number of conclusions. The most likely catalyst for hydrogenation of PhC(H)=NtBu with LiAlH4 is LiAlH2[N]2. Insertion of a third imine via a heterobimetallic transition state has a barrier of +23.2 kcal mol−1H). The rate-determining step is hydrogenolysis of LiAlH[N]3 with H2 with a barrier of +29.2 kcal mol−1. In agreement with experiment, replacing Li for Na (or K) and Al for B (or Ga) led to higher calculated barriers. Also, the AlH4 anion showed very high barriers. Calculations support the experimentally observed effects of the imine substituents at C and N: the lowest barriers are calculated for imines with aryl-substituents at C and alkyl-substituents at N.  相似文献   
162.
A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)+ in water. A combination of (time-resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a 1O2 pathway was found. Rudppz ([(tbbpy)2Ru(dppz)]Cl2, tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2′,3′-c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)+ from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H2O2 as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.  相似文献   
163.
164.
165.
Light‐induced degradation (LID) has been identified to be a critical issue for solar cells processed on boron‐doped silicon substrates. Typically, Czochralski‐grown silicon (Cz‐Si) has been reported to suffer from stronger LID than block‐cast multicrystalline silicon (mc‐Si) due to higher oxygen concentrations. This work investigates LID under conditions practically relevant under module operation on different cell types. It is shown that aluminium oxide (AlOx) passivated mc‐Si solar cells degrade more than a reference aluminium back surface field mc‐Si cell and, remarkably, an AlOx passivated Cz‐Si solar cell. The defect which is activated by illumination is shown to be doubtful a sole bulk effect while the AlOx passivation might play a certain role. This work may contribute to a re‐evaluation of the suitability of boron‐doped Cz‐ and mc‐Si for solar cells with very high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
166.
This work describes the synthesis and full characterization of a series of GaCl3 and B(C6F5)3 adducts of diazenes R1?N?N?R2 (R1=R2=Me3Si, Ph; R1=Me3Si, R2=Ph). Trans‐Ph?N?N?Ph forms a stable adduct with GaCl3, whereas no adduct, but instead a frustrated Lewis acid–base pair is formed with B(C6F5)3. The cis‐Ph?N?N?Ph ? B(C6F5)3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans‐ to cis‐Ph?N?N?Ph, which provides more space for the bulky borane. Treatment of trans‐Ph?N?N?SiMe3 with GaCl3 led to the expected trans‐Ph?N?N?SiMe3 ? GaCl3 adduct but the reaction with B(C6F5)3 triggered a 1,2‐Me3Si shift, which resulted in the formation of a highly labile iso‐diazene, Me3Si(Ph)N?N; stabilized as a B(C6F5)3 adduct. Trans‐Me3Si?N?N?SiMe3 forms a labile cis‐Me3Si?N?N?SiMe3 ? B(C6F5)3 adduct, which isomerizes to give the transient iso‐diazene species (Me3Si)2N?N ? B(C6F5)3 upon heating. Both iso‐diazene species insert easily into one B?C bond of B(C6F5)3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X‐ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.  相似文献   
167.
Cinchonidine (CD) adsorbed onto a platinum metal catalyst leads to rate acceleration and induces strong stereocontrol in the asymmetric hydrogenation of trifluoroacetophenone. Addition of catalytic amounts of trifluoroacetic acid (TFA) significantly enhances the enantiomeric excess from 50 to 92 %. The origin of the enantioselectivity bestowed by co‐adsorbed CD and TFA is investigated by using in situ attenuated total reflection infrared spectroscopy and modulation excitation spectroscopy. Molecular interactions between the chiral modifier (CD), acid additive (TFA) and the trifluoro‐activated substrate at the solid–liquid interface are elucidated under conditions relevant to catalytic hydrogenations, that is, on a technical Pt/Al2O3 catalyst in the presence of H2 and solvent. Monitoring of the unmodified and modified surface during the hydrogenation provides an insight into the phenomenon of rate enhancement and the crucial interactions of CD with the ketone, corresponding product alcohol, and TFA. Comparison of the diastereomeric interactions occurring on the modified surface and in the liquid solution shows a striking difference for the chiral preferences of CD. The spectroscopic data, in combination with calculations of molecular structures and energies, sheds light on the reaction mechanism of the heterogeneous asymmetric hydrogenation of trifluoromethyl ketones and the involvement of TFA in the diastereomeric intermediate surface complex: the quinuclidine N atom of the adsorbed CD forms an N?H?O‐type hydrogen‐bonding interaction not only with the trifluoro‐activated ketone but also with the corresponding alcohol and the acid additive. Strong evidence is provided that it is a monodentate acid/base adduct in which the carboxylate of TFA resides at the quinuclidine N‐atom of CD, which imparts a better stereochemical control.  相似文献   
168.
The photoionization and dissociative photoionization of 1,4‐di‐tert‐butyl‐1,4‐azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV. Several low‐lying electronically excited states in the cation were identified. The various pathways for dissociative photoionization were modeled by statistical theory, and appearance energies AE0K were obtained. The loss of isobutene in a retro‐hydroboration reaction is the dominant pathway, which proceeds with a reverse barrier. Pyrolysis of the parent compound in a chemical reactor leads to the generation of several yet unobserved boron compounds. The ionization energies of the C4H6BN isomers 1,2‐ and 1,4‐dihydro‐1,4‐azaborinine and the C3H6BN isomer 1,2‐dihydro‐1,3‐azaborole were determined from threshold photoelectron spectra.  相似文献   
169.
A series of 2,5‐bis(arylethynyl)rhodacyclopentadienes has been prepared by a rare example of regiospecific reductive coupling of 1,4‐(p‐R‐phenyl)‐1,3‐butadiynes (R?H, Me, OMe, SMe, NMe2, CF3, CO2Me, CN, NO2, ?C?C‐(p‐C6H4?NHex2), ?C?C?(p‐C6H4?CO2Oct)) at [RhX(PMe3)4] ( 1 ) (X=?C?C?SiMe3 ( a ), ?C?C‐(p‐C6H4?NMe2) ( b ), ?C?C?C?C?(p‐C6H4?NPh2) ( c ) or ?C?C?{p‐C6H4‐C?C?(p‐C6H4‐N(C6H13)2)} ( d ) or Me ( e )), giving the 2,5‐bis(arylethynyl) isomer exclusively. The rhodacyclopentadienes bearing a methyl ligand in the equatorial plane (compound 1 e ) have been converted into their chloro analogues by reaction with HCl etherate. The rhodacycles thus obtained are stable to air and moisture in the solid state and the acceptor‐substituted compounds are even stable to air and moisture in solution. The photophysical properties of the rhodacyclopentadienes are highly unusual in that they exhibit, exclusively, fluorescence between 500–800 nm from the S1 state, with quantum yields of Φ=0.01–0.18 and short lifetimes (τ=0.45–8.20 ns). The triplet state formation (ΦISC=0.57 for 2 a ) is exceptionally slow, occurring on the nanosecond timescale. This is unexpected, because the Rh atom should normally facilitate intersystem crossing within femto‐ to picoseconds, leading to phosphorescence from the T1 state. This work therefore highlights that in some transition‐metal complexes, the heavy atom can play a more subtle role in controlling the photophysical behavior than is commonly appreciated.  相似文献   
170.
The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino‐reactive sites (NHS esters or mixed N‐succinimidyl carbonates) are reported. All fluorophores contain an N‐alkyl‐1,2‐dihydro‐2,2,4‐trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635–639 and 655–659 nm, respectively. A vastly simplified approach to red‐emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N‐hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino‐reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono‐N‐hydroxysuccinimidyl ester from 5‐carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92 % for free fluorophores, and amounted to 18–64 % for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two‐color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two‐color channels with low cross‐talk and negligible background at approximately 40 nm resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号