首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
化学   29篇
物理学   10篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1997年   2篇
  1995年   2篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
31.
The interaction in aqueous solution between either the normal block copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide): Pluronic PE6200 [(EO)(11)-(PO)(28)-(EO)(11)], or the reverse block copolymer poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide): Pluronic 25R4 [(PO)(19)-(EO)(33)-(PO)(19)] and the surfactants sodium decylsulfate, C(10)OS, decyltrimethyl ammonium bromide, C(10)TAB, and pentaethylene glycol monodecyl ether, C(10)E(5), was investigated and the aggregation behavior of these surfactants with Pluronics was compared. Surface tension measurements show that Pluronics in their non-aggregated state better interact with the anionic surfactant C(10)OS than with cationic and non-ionic ones. The presence of the two Pluronics induces the same lowering of the aggregation number of C(10)OS as shown by fluorescence quenching measurements. The number of polymer chains necessary to bind each C(10)OS aggregate has been estimated to be approximately 6 for PE6200 and approximately 2 for 25R4. Furthermore, this surfactant also induces the same increment in the gyration radius of the polymers as revealed by viscosimetry. Calorimetric results have been reasonably reproduced by applying a simple equilibrium model to the aggregation processes.  相似文献   
32.
The effect of the surfactant tail length on the interaction between sodium alkylsulfates (C n OS, n = 6, 8, 10, 12) and poly(vinylpyrrolidone) (PVP) in aqueous solution has been investigated by electron paramagnetic resonance (EPR) spectroscopy employing TEMPO-choline (TC) as a spin probe. Experimental evidence show that all of the considered surfactants molecularly interact with PVP. However, the cooperative behavior of the surfactant molecules when self-aggregating onto the polymer strongly increases with the surfactant tail length. In fact, in the case of C6OS, the TC EPR parameters indicate that surfactant monomers randomly associate with the polymer chain. In the case of C8OS, formation of surfactant-polymer clusters occurs simultaneously to free micellization. In the case of C12OS and C10OS, the nitrogen isotropic hyperfine coupling constant of TC (< A N >) shows that formation of surfactant-polymer clusters occurs. The correlation time (τ C ) of the nitroxide in the same systems shows that electrostatic repulsion among the clusters, formed on the PVP macromolecules, favors a broadening of the polymer coil and a stiffening of its chain. The average number of surfactant molecules participating in each cluster adsorbed onto the polymer, as determined by fluorescence quenching measurements, is much higher for C12OS than for C10OS.  相似文献   
33.
The structure of chemically-crosslinked chitosan and chitosan-poly(vinylpyrrolidone) (PVP) hydrogels is investigated by means of the combined use of small-angle neutron scattering (SANS), electron paramagnetic resonance spectroscopy (EPR), intradiffusion, and swelling degree measurements. These hydrogels may be described in terms of an inhomogeneous structure composed by polymer-rich and polymer-poor regions. The polymer-rich regions, whose correlation distance zeta is ranged between approximately 600 and approximately 850 A, are, in turn, characterized by the presence of a network formed by the chemical crosslinks, with a mean correlation distance xi approximately 90 A. The structures of chitosan and chitosan-PVP hydrogels have also been analyzed in the presence of sodium decylsulfate micelles that could provide a multidomain system useful, in principle, for drug delivery applications. Both SANS and EPR measurements show that sodium decylsulfate micelles do not significantly interact with both the gels. Finally, intradiffusion and swelling degree measurements show an improved hydrophilicity of chitosan-PVP gels, even further magnified by the presence of C10OS surfactant.  相似文献   
34.
35.
Surfactant-containing poly(vinyl alcohol) (PVA) cryogels have been prepared by drying and reswelling hydrogel patches, previously obtained by the freeze/thaw procedure, in decyltrimethylammonium bromide (C10TAB) aqueous solutions. The microstructural and diffusive properties of the resulting material have been characterized by a combined experimental strategy. Gravimetric measurements show that the cryogel maximum swelling is not affected by the surfactant. The surfactant concentration within the cryogel, measured by ion chromatography, is the same as that in the rehydrating surfactant solution. Electron paramagnetic resonance (EPR) spin-probe and small-angle neutron scattering (SANS) measurements show that surfactant self-aggregation in the gel is similar to that in water, occurring at the same critical concentration and resulting in the formation of micellar aggregates whose structure is not affected by the cryogel polymeric scaffold. However, both the micelle intradiffusion coefficients, measured by PGSE-NMR, and the spin-probe correlation times, measured by EPR, indicate that dynamic processes in the hydrogel are much slower than in bulk water. A quantitative analysis of these results suggests that the cryogel polymer-poor domains, in which surfactant molecules are solubilized, have an average dimension of approximately 0.1 microm. Interestingly the experimental data also show that the polymer-poor phase contains more polymer than expected, suggesting that the spinodal decomposition, which occurs during the freezing step of cryogel preparation, is not complete or prevented by ice formation.  相似文献   
36.
Summary Four e-beam-processed, planar electrodes with gaps between 0.5 and 4 μm were used to create quadrupole electric-field trap. The electrodes were immersed in an aqueous particle suspension and driven by kHz to MHz signals of several volts amplitude. Micron and submicron particles could be stably trapped by negative dielectrophoresis. Latex beads of 1000, 600, 100 and 14 nm diameter could be concentrated between the electrodes (positive dielectrophoresis) or levitated as condensed cloud (negative dielectrophoresis). The results are surprising since polarisation forces depend on the volume of the particle and, up to now, it was expected that thermal forces would dominate the behaviour of particles with diameters <100 nm. However, micron-scaled electrode configurations allow the application of extremely strong fields (up to 20 MV/m) and open up new perspectives for microparticle handling and macromolecule trapping.  相似文献   
37.
The mechanism of conversion of globular native proteins into amyloid fibrils represents one of the most attractive research topics in biophysics, because of its involvement in the development of severe pathologies and in various biotechnological processes. Aqueous medium properties, such as pH and ionic strength, as well as interactions with other species in solution, play a key role in tuning the fibrillization process. Here, we describe a comparative study of the influence of different ions from the Hofmeister series on the thermal unfolding and aggregation propensity of MNEI, a model protein, selected because of its tendency to form amyloid aggregates at acidic pH, even at temperatures well below its melting temperature. By selecting a temperature at which only negligible amounts of protein are unfolded, we have focused on the effect of ions on fibril formation. ThT fluorescence experiments indicated that all the salts examined increased the rate and the extent of fibrillization. Moreover, we found that anions, particularly sulfate, strongly influence the process, which instead is only marginally affected by different cations. Finally, a specific link to the chloride concentration was detected.  相似文献   
38.
The mutual diffusion coefficients for two aqueous ternary systems, both containing a protein, human serum albumin (HSA, component 1), were measured. The first system contained a neutral polymer, polyethylene glycol (PEG, component 2), and the second an "organic solvent", 2-methyl-2,4-pentanediol (MPD, component 3). Both PEG and MPD are used as co-precipitants in HSA crystallization protocols. Measurements were performed at constant protein concentration, with increasing precipitant content. The results obtained for the two systems were discussed and compared. In both cases, the two main diffusion coefficients, relative to the motion of the protein and of the precipitant under their own concentration gradient, can be interpreted in terms of non-specific volume interactions between the solutes. Particularly, it was showed that any possible direct HSA-MPD interaction may not have a significant effect on the values of these two diffusion coefficients. Differences arise between the cross precipitant's diffusion coefficients, relative to the motion of the precipitant under the protein concentration gradient, D(i1) with i = 2, 3. In the case of PEG, the D(21) trend vs. c(2) can be simply interpreted in terms of an "exclude volume" effect. In contrast, in the case of MPD, the D(31)vs. c(3) trend seems to indicate a more complex mechanism of transport. Because the cross precipitant's diffusion coefficient plays an important role in the crystallization process, the implication of the observed difference on the crystallization procedure was also discussed.  相似文献   
39.
Ionophores are an important class of synthetic molecules which mimic natural ion channels or carriers. Here we report the aggregation behavior in pseudo-physiological environment of three Cyclic Phosphate-Linked Oligosaccharides (CyPLOS) derivatives, synthetic ion transporters based on cyclic, phosphate-linked disaccharide skeleton differing for the nature of the tails (tetraethylene-TEG glycol and/or n-undecyl chains) attached to the C-2 and C-3 of the constitutive monosaccharides. Their aggregation behavior has been studied by a combined use of dynamic light scattering (DLS), electron paramagnetic resonance spectroscopy (EPR) and Small Angle Neutron Scattering (SANS). DLS measurements were performed to reveal the formation and size distribution of the CyPLOS aggregates. EPR measurements, by using 5-doxyl stearic acid (5-DSA) as spin-probe, showed that the aggregates are mainly due to the formation of double layers and allowed to analyze the local fluidity. Finally, SANS measurements allowed estimating the layer thickness of the double layers. Our results indicate that the three CyPLOS analogs show self-aggregation properties that depend on the different nature of the inserted tails.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号